CR-structures on a real Lie algebra

Giuliana Gigante; Giuseppe Tomassini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1991)

  • Volume: 2, Issue: 3, page 203-205
  • ISSN: 1120-6330

Abstract

top
Given the notion of C R -structures without torsion on a real 2 n + 1 dimensional Lie algebra L 0 we study the problem of their classification when L 0 is a reductive algebra.

How to cite

top

Gigante, Giuliana, and Tomassini, Giuseppe. "CR-structures on a real Lie algebra." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.3 (1991): 203-205. <http://eudml.org/doc/244158>.

@article{Gigante1991,
abstract = {Given the notion of \( CR \)-structures without torsion on a real \( 2n + 1 \) dimensional Lie algebra \( \mathcal\{L\}\_\{0\} \) we study the problem of their classification when \( \mathcal\{L\}\_\{0\} \) is a reductive algebra.},
author = {Gigante, Giuliana, Tomassini, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Lie algebra; Deformations of special (CR) structures; Analytic moduli problems; -structure; Nijenhuis tensor},
language = {eng},
month = {9},
number = {3},
pages = {203-205},
publisher = {Accademia Nazionale dei Lincei},
title = {CR-structures on a real Lie algebra},
url = {http://eudml.org/doc/244158},
volume = {2},
year = {1991},
}

TY - JOUR
AU - Gigante, Giuliana
AU - Tomassini, Giuseppe
TI - CR-structures on a real Lie algebra
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/9//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 3
SP - 203
EP - 205
AB - Given the notion of \( CR \)-structures without torsion on a real \( 2n + 1 \) dimensional Lie algebra \( \mathcal{L}_{0} \) we study the problem of their classification when \( \mathcal{L}_{0} \) is a reductive algebra.
LA - eng
KW - Lie algebra; Deformations of special (CR) structures; Analytic moduli problems; -structure; Nijenhuis tensor
UR - http://eudml.org/doc/244158
ER -

References

top
  1. HELGASON, S., Differential Geometry and Symmetric Spaces. Academic Press, New York1962. Zbl0111.18101MR145455
  2. MALYSEV, F., Complex homogeneous spaces of semisimple Lie groups of the first category. Math. Izvestia, 9, 1975, 939-949. Zbl0338.53036MR402132
  3. SNOW, D., Invariant complex structures on reductive Lie groups. J. für Mathematik, band 371, 1986, 191-215. Zbl0588.22007MR859325DOI10.1515/crll.1986.371.191
  4. SUGIURA, M., Conjugate classes of Cartan subalgebras in real semisimple Lie algebras. J. Math. Soc. Japan, 11, 1959, 375-434. Zbl0204.04201MR146305
  5. WEBSTER, S. M., Pseudo-hermitian structures on a real hypersurface. J. Differential Geometry, 13, 1978, 25-41. Zbl0379.53016MR520599

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.