On consistency, stability and convergence of staggered solution procedures

Ewa Turska; Bernardo A. Schrefler

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1994)

  • Volume: 5, Issue: 3, page 265-271
  • ISSN: 1120-6330

Abstract

top
The simultaneous and staggered procedures of solving a partitioned form of a coupled system of ordinary differential equations are presented. Formulas for errors are compared. Counter-examples for convergence with a constant number of iterations at each time step are given.

How to cite

top

Turska, Ewa, and Schrefler, Bernardo A.. "On consistency, stability and convergence of staggered solution procedures." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.3 (1994): 265-271. <http://eudml.org/doc/244163>.

@article{Turska1994,
abstract = {The simultaneous and staggered procedures of solving a partitioned form of a coupled system of ordinary differential equations are presented. Formulas for errors are compared. Counter-examples for convergence with a constant number of iterations at each time step are given.},
author = {Turska, Ewa, Schrefler, Bernardo A.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Coupled problems; Systems of linear simultaneous equations; Numerical solution procedures; consistency; stability; staggered solution procedures; counterexamples; system of ordinary differential equations; convergence},
language = {eng},
month = {9},
number = {3},
pages = {265-271},
publisher = {Accademia Nazionale dei Lincei},
title = {On consistency, stability and convergence of staggered solution procedures},
url = {http://eudml.org/doc/244163},
volume = {5},
year = {1994},
}

TY - JOUR
AU - Turska, Ewa
AU - Schrefler, Bernardo A.
TI - On consistency, stability and convergence of staggered solution procedures
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/9//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 3
SP - 265
EP - 271
AB - The simultaneous and staggered procedures of solving a partitioned form of a coupled system of ordinary differential equations are presented. Formulas for errors are compared. Counter-examples for convergence with a constant number of iterations at each time step are given.
LA - eng
KW - Coupled problems; Systems of linear simultaneous equations; Numerical solution procedures; consistency; stability; staggered solution procedures; counterexamples; system of ordinary differential equations; convergence
UR - http://eudml.org/doc/244163
ER -

References

top
  1. SIMONI, L. - SCHREFLER, B. A., A staggered F. E. solution for water and gas flow in deforming porous media. Commun. Appl. Num. Methods, 7, 1991, 213-223. Zbl0724.76052
  2. LAMBERT, J. D., Computational Methods in Ordinary Differential Equations. J. Wiley & Sons, London1973. Zbl0258.65069MR423815
  3. TURSKA, E. - WISNIEWSKI, K. - SCHREFLER, B. A., Error propagation of staggered solution procedures for transient problems. Accepted for publication in Comp. Meth. in Appl. Mech. and Engng. 
  4. PARK, K. C., Stabilisation of partitioned solution procedure for pore fluid-soil interaction analysis. Int. J. Num. Meth. in Engng., 19, 1983, 1669-1673. Zbl0519.76095
  5. PARK, K. C., Partitioned transient analysis procedures for coupled-field problems: stability analysis. ASME J. Appl. Mech., 47, 1980, 370-376. Zbl0437.73072MR574231
  6. ZIENKIEWICZ, O. C. - PAUL, D. K. - CHAN, A. H. C., Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int. J. Num. Meth. in Engng., 26, 1988, 1039-1055. Zbl0634.73110
  7. PARK, K. C. - FELIPPA, C. A., Partitioned analysis of coupled systems. In: T. BELYTSCHKO - T. J. R. HUGHES (eds.), Computational Methods for Transient Analysis. Elsevier Science Publishers B. V., 1983. Zbl0546.73063
  8. ZIENKIEWICZ, O. C. - TAYLOR, R. L., The Finite Element Method. Vol. 2, McGraw-Hill, London1991. Zbl0974.76003
  9. GEAR, C. W., Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall Inc., Engelwood Cliffs, N.J.1971. Zbl1145.65316MR315898
  10. HUGHES, T. J. R., The Finite Element Method. Prentice-Hall Inc., Engelwood Cliffs, N.J.1987. Zbl0634.73056MR1008473
  11. WANNER, G., A short proof on non-linear A-stability. BIT, 16, 1976, 226-227. Zbl0329.65048MR416037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.