On consistency, stability and convergence of staggered solution procedures
Ewa Turska; Bernardo A. Schrefler
- Volume: 5, Issue: 3, page 265-271
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topReferences
top- SIMONI, L. - SCHREFLER, B. A., A staggered F. E. solution for water and gas flow in deforming porous media. Commun. Appl. Num. Methods, 7, 1991, 213-223. Zbl0724.76052
- LAMBERT, J. D., Computational Methods in Ordinary Differential Equations. J. Wiley & Sons, London1973. Zbl0258.65069MR423815
- TURSKA, E. - WISNIEWSKI, K. - SCHREFLER, B. A., Error propagation of staggered solution procedures for transient problems. Accepted for publication in Comp. Meth. in Appl. Mech. and Engng.
- PARK, K. C., Stabilisation of partitioned solution procedure for pore fluid-soil interaction analysis. Int. J. Num. Meth. in Engng., 19, 1983, 1669-1673. Zbl0519.76095
- PARK, K. C., Partitioned transient analysis procedures for coupled-field problems: stability analysis. ASME J. Appl. Mech., 47, 1980, 370-376. Zbl0437.73072MR574231
- ZIENKIEWICZ, O. C. - PAUL, D. K. - CHAN, A. H. C., Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int. J. Num. Meth. in Engng., 26, 1988, 1039-1055. Zbl0634.73110
- PARK, K. C. - FELIPPA, C. A., Partitioned analysis of coupled systems. In: T. BELYTSCHKO - T. J. R. HUGHES (eds.), Computational Methods for Transient Analysis. Elsevier Science Publishers B. V., 1983. Zbl0546.73063
- ZIENKIEWICZ, O. C. - TAYLOR, R. L., The Finite Element Method. Vol. 2, McGraw-Hill, London1991. Zbl0974.76003
- GEAR, C. W., Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall Inc., Engelwood Cliffs, N.J.1971. Zbl1145.65316MR315898
- HUGHES, T. J. R., The Finite Element Method. Prentice-Hall Inc., Engelwood Cliffs, N.J.1987. Zbl0634.73056MR1008473
- WANNER, G., A short proof on non-linear A-stability. BIT, 16, 1976, 226-227. Zbl0329.65048MR416037