Foliations with complex leaves

Giuliana Gigante; Giuseppe Tomassini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1993)

  • Volume: 4, Issue: 2, page 115-120
  • ISSN: 1120-6330

Abstract

top
Let X be a smooth foliation with complex leaves and let D be the sheaf of germs of smooth functions, holomorphic along the leaves. We study the ringed space X , D . In particular we concentrate on the following two themes: function theory for the algebra D X and cohomology with values in D .

How to cite

top

Gigante, Giuliana, and Tomassini, Giuseppe. "Foliations with complex leaves." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 4.2 (1993): 115-120. <http://eudml.org/doc/244170>.

@article{Gigante1993,
abstract = {Let \( X \) be a smooth foliation with complex leaves and let \( \mathcal\{D\} \) be the sheaf of germs of smooth functions, holomorphic along the leaves. We study the ringed space \( (X, \mathcal\{D\}) \). In particular we concentrate on the following two themes: function theory for the algebra \( \mathcal\{D\}(X) \) and cohomology with values in \( \mathcal\{D\} \).},
author = {Gigante, Giuliana, Tomassini, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Foliations; Several complex variables and analytic spaces; CR-structures; smooth foliation; complex leaves; cohomology; Kobayashi metric},
language = {eng},
month = {6},
number = {2},
pages = {115-120},
publisher = {Accademia Nazionale dei Lincei},
title = {Foliations with complex leaves},
url = {http://eudml.org/doc/244170},
volume = {4},
year = {1993},
}

TY - JOUR
AU - Gigante, Giuliana
AU - Tomassini, Giuseppe
TI - Foliations with complex leaves
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1993/6//
PB - Accademia Nazionale dei Lincei
VL - 4
IS - 2
SP - 115
EP - 120
AB - Let \( X \) be a smooth foliation with complex leaves and let \( \mathcal{D} \) be the sheaf of germs of smooth functions, holomorphic along the leaves. We study the ringed space \( (X, \mathcal{D}) \). In particular we concentrate on the following two themes: function theory for the algebra \( \mathcal{D}(X) \) and cohomology with values in \( \mathcal{D} \).
LA - eng
KW - Foliations; Several complex variables and analytic spaces; CR-structures; smooth foliation; complex leaves; cohomology; Kobayashi metric
UR - http://eudml.org/doc/244170
ER -

References

top
  1. ANDREOTTI, A. - GRAUERT, H., Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France, 90, 1962, 193-259. Zbl0106.05501MR150342
  2. ANDREOTTI, A. - NACINOVICH, M., Analytic Convexity. Ann. Scuola Norm. Sup. Pisa, 7, 1980, 287-372. Zbl0435.35039MR581145
  3. CHAUMAT, J. - CHOLLET, A. M., Noyaux pour résoudre l'équation ¯ dans des classes ultradifférentiables sur des compacts irréguliers de C n . Preprint. 
  4. FREEMAN, M., Local complex foliations of real submanifolds. Math. Ann., 209, 1970, 1-30. Zbl0267.32006MR346185
  5. FREEMAN, M., Tangential Cauchy-Riemann equations and uniform approximation. Pacific J. Math., 33, N. 1, 1970, 101-108. Zbl0184.31103MR264117
  6. GAY, R. - SEBBAR, A., Division et extension dans l'algèbre A Ω d'un ouvert pseudo-convex à bord lisse de C n . Math. Z., 189, 1985, 421-447. Zbl0547.32009MR783566DOI10.1007/BF01164163
  7. HÖRMANDER, L., An Introduction to Complex Analysis in Several Variables. North-Holland1973. Zbl0271.32001MR1045639
  8. KOBAYASHI, S., Intrinsic distances, measures and geometric function theory. Bull. Am. Math. Soc., 82, 1976, 357-416. Zbl0346.32031MR414940
  9. KOHN, J. J., Global regularity for ¯ on weakly pseudoconvex manifolds. Trans. Amer. Math. Soc., 181, 1973, 273-292. Zbl0276.35071MR344703
  10. NIRENBERG, L., A Proof of the Malgrange Preparation Theorem. Proceedings of Liverpool Singularities, I. Lecture notes in mathematics, 192, Springer-Verlag, New York1971, 97-105. Zbl0212.10702MR412460
  11. REA, C., Levi flat submanifolds and biholomorphic extension of foliations. Ann. Scuola Norm. Sup. Pisa, 26, 1972, 664-681. Zbl0272.57013MR425158
  12. SIBONY, N., A class of hyperbolic manifolds. Recent developments in several complex variables. Ann. of Math. Stud., Princeton Univ. Press, N. 100, 1981. Zbl0476.32033MR627768
  13. SOMMER, F., Komplexe analytische Blätterung reeler Mannigfaltigkeiten in C n . Math. Ann., 136, 1958, 111-133. Zbl0092.29902MR101924
  14. TOMASSINI, G., Extension d'objects CR. Math. Z., 194, 1987, 471-486. Zbl0629.32015MR881705DOI10.1007/BF01161916

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.