The growth of solutions of algebraic differential equations

Walter K. Hayman

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1996)

  • Volume: 7, Issue: 2, page 67-73
  • ISSN: 1120-6330

Abstract

top
Suppose that f z is a meromorphic or entire function satisfying P z , f , f , , f n = 0 where P is a polynomial in all its arguments. Is there a limitation on the growth of f , as measured by its characteristic T r , f ? In general the answer to this question is not known. Theorems of Gol'dberg, Steinmetz and the author give a positive answer in certain cases. Some illustrative examples are also given.

How to cite

top

Hayman, Walter K.. "The growth of solutions of algebraic differential equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 7.2 (1996): 67-73. <http://eudml.org/doc/244183>.

@article{Hayman1996,
abstract = {Suppose that \( f(z) \) is a meromorphic or entire function satisfying \( P(z, f, f', \ldots , f^\{(n)\}) = 0 \) where \( P \) is a polynomial in all its arguments. Is there a limitation on the growth of \( f \), as measured by its characteristic \( T(r, f) \)? In general the answer to this question is not known. Theorems of Gol'dberg, Steinmetz and the author give a positive answer in certain cases. Some illustrative examples are also given.},
author = {Hayman, Walter K.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Differential equations; Entire; Meromorphic; Growth; order of meromorphic function; meromorphic solution; Nevanlinna characteristic function},
language = {eng},
month = {10},
number = {2},
pages = {67-73},
publisher = {Accademia Nazionale dei Lincei},
title = {The growth of solutions of algebraic differential equations},
url = {http://eudml.org/doc/244183},
volume = {7},
year = {1996},
}

TY - JOUR
AU - Hayman, Walter K.
TI - The growth of solutions of algebraic differential equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1996/10//
PB - Accademia Nazionale dei Lincei
VL - 7
IS - 2
SP - 67
EP - 73
AB - Suppose that \( f(z) \) is a meromorphic or entire function satisfying \( P(z, f, f', \ldots , f^{(n)}) = 0 \) where \( P \) is a polynomial in all its arguments. Is there a limitation on the growth of \( f \), as measured by its characteristic \( T(r, f) \)? In general the answer to this question is not known. Theorems of Gol'dberg, Steinmetz and the author give a positive answer in certain cases. Some illustrative examples are also given.
LA - eng
KW - Differential equations; Entire; Meromorphic; Growth; order of meromorphic function; meromorphic solution; Nevanlinna characteristic function
UR - http://eudml.org/doc/244183
ER -

References

top
  1. BANK, S. B., On determining the growth of meromorphic solutions of algebraic differential equations having arbitrary entire coefficients. Nagoya Math. J., 49, 1973, 53-65. Zbl0268.34010MR320400
  2. BANK, S. B., Some results on Analytic and Meromorphic Solutions of Algebraic Differential Equations. Advances in Mathematics, 15, 1975, 41-61. Zbl0296.34005MR379940
  3. BANK, S. B., On the existence of meromorphic solutions of differential equations having arbitrarily rapid growth. J. reine angew. Math., 288, 1976, 176-182. Zbl0337.34007MR430371
  4. BASU, N. - BOSE, S. - VIJAYARAGHAVAN, T., A simple example for a Theorem of Vijayaraghavan. J. London Math. Soc., 12, 1937, 250-252. MR95760JFM63.0419.02
  5. BOREL, E., Mémoire sur les séries divergentes. Ann. Sci. École Norm. Sup., 16, 1899, 9-136. JFM30.0230.03
  6. GOL'DBERG, A. A., On single valued solutions of first order differential equations. Ukrain Mat. Zh., 8, 1956, 254-261 (Russian). Zbl0072.09202MR85396
  7. HAYMAN, W. K., The local growth of power series: A survey of the Wiman-Valiron method. Canad. Math. Bull., 17 (3), 1974, 317-358. Zbl0314.30021MR385095
  8. LAINE, I., Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin-New York1993. Zbl0784.30002MR1207139DOI10.1515/9783110863147
  9. STEINMETZ, N., Über das Anwachsen der Lösungen homogener algebraischer Differentialgleichungen zweiter Ordnung. Manuscripta Math., 32, 1980, 303-308. Zbl0444.34035MR595424DOI10.1007/BF01299607
  10. STEINMETZ, N., Über die eindeutigen Lösungen einer homogenen algebraischer Differentialgleichung zweiter Ordnung. Ann. Acad. Sci. Fenn., AI7, 1982, 177-188. Zbl0565.34005MR686638
  11. VALIRON, G., Fonctions Analytiques. Presses Universitaires de France, Paris1954. Zbl0055.06702MR61658
  12. VIJAYARAGHAVAN, T., Sur la croissance des fonctions définies par les équations différentielles. C. R. Acad. Sci., Paris, 194, 1932, 827-829. Zbl0004.00803
  13. WITTICH, H., Neuere Untersuchungen über eindeutige analytische Funktionen. Springer, Berlin-Göttingen-Heidelberg1955. Zbl0159.10103MR77620

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.