The growth of solutions of algebraic differential equations
- Volume: 7, Issue: 2, page 67-73
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topHayman, Walter K.. "The growth of solutions of algebraic differential equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 7.2 (1996): 67-73. <http://eudml.org/doc/244183>.
@article{Hayman1996,
abstract = {Suppose that \( f(z) \) is a meromorphic or entire function satisfying \( P(z, f, f', \ldots , f^\{(n)\}) = 0 \) where \( P \) is a polynomial in all its arguments. Is there a limitation on the growth of \( f \), as measured by its characteristic \( T(r, f) \)? In general the answer to this question is not known. Theorems of Gol'dberg, Steinmetz and the author give a positive answer in certain cases. Some illustrative examples are also given.},
author = {Hayman, Walter K.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Differential equations; Entire; Meromorphic; Growth; order of meromorphic function; meromorphic solution; Nevanlinna characteristic function},
language = {eng},
month = {10},
number = {2},
pages = {67-73},
publisher = {Accademia Nazionale dei Lincei},
title = {The growth of solutions of algebraic differential equations},
url = {http://eudml.org/doc/244183},
volume = {7},
year = {1996},
}
TY - JOUR
AU - Hayman, Walter K.
TI - The growth of solutions of algebraic differential equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1996/10//
PB - Accademia Nazionale dei Lincei
VL - 7
IS - 2
SP - 67
EP - 73
AB - Suppose that \( f(z) \) is a meromorphic or entire function satisfying \( P(z, f, f', \ldots , f^{(n)}) = 0 \) where \( P \) is a polynomial in all its arguments. Is there a limitation on the growth of \( f \), as measured by its characteristic \( T(r, f) \)? In general the answer to this question is not known. Theorems of Gol'dberg, Steinmetz and the author give a positive answer in certain cases. Some illustrative examples are also given.
LA - eng
KW - Differential equations; Entire; Meromorphic; Growth; order of meromorphic function; meromorphic solution; Nevanlinna characteristic function
UR - http://eudml.org/doc/244183
ER -
References
top- BANK, S. B., On determining the growth of meromorphic solutions of algebraic differential equations having arbitrary entire coefficients. Nagoya Math. J., 49, 1973, 53-65. Zbl0268.34010MR320400
- BANK, S. B., Some results on Analytic and Meromorphic Solutions of Algebraic Differential Equations. Advances in Mathematics, 15, 1975, 41-61. Zbl0296.34005MR379940
- BANK, S. B., On the existence of meromorphic solutions of differential equations having arbitrarily rapid growth. J. reine angew. Math., 288, 1976, 176-182. Zbl0337.34007MR430371
- BASU, N. - BOSE, S. - VIJAYARAGHAVAN, T., A simple example for a Theorem of Vijayaraghavan. J. London Math. Soc., 12, 1937, 250-252. MR95760JFM63.0419.02
- BOREL, E., Mémoire sur les séries divergentes. Ann. Sci. École Norm. Sup., 16, 1899, 9-136. JFM30.0230.03
- GOL'DBERG, A. A., On single valued solutions of first order differential equations. Ukrain Mat. Zh., 8, 1956, 254-261 (Russian). Zbl0072.09202MR85396
- HAYMAN, W. K., The local growth of power series: A survey of the Wiman-Valiron method. Canad. Math. Bull., 17 (3), 1974, 317-358. Zbl0314.30021MR385095
- LAINE, I., Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin-New York1993. Zbl0784.30002MR1207139DOI10.1515/9783110863147
- STEINMETZ, N., Über das Anwachsen der Lösungen homogener algebraischer Differentialgleichungen zweiter Ordnung. Manuscripta Math., 32, 1980, 303-308. Zbl0444.34035MR595424DOI10.1007/BF01299607
- STEINMETZ, N., Über die eindeutigen Lösungen einer homogenen algebraischer Differentialgleichung zweiter Ordnung. Ann. Acad. Sci. Fenn., AI7, 1982, 177-188. Zbl0565.34005MR686638
- VALIRON, G., Fonctions Analytiques. Presses Universitaires de France, Paris1954. Zbl0055.06702MR61658
- VIJAYARAGHAVAN, T., Sur la croissance des fonctions définies par les équations différentielles. C. R. Acad. Sci., Paris, 194, 1932, 827-829. Zbl0004.00803
- WITTICH, H., Neuere Untersuchungen über eindeutige analytische Funktionen. Springer, Berlin-Göttingen-Heidelberg1955. Zbl0159.10103MR77620
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.