Dual-standard subgroups in nonperiodic locally soluble groups
Stewart E. Stonehewer; Giovanni Zacher
- Volume: 1, Issue: 2, page 101-104
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topStonehewer, Stewart E., and Zacher, Giovanni. "Dual-standard subgroups in nonperiodic locally soluble groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.2 (1990): 101-104. <http://eudml.org/doc/244189>.
@article{Stonehewer1990,
abstract = {Let G be a non-periodic locally solvable group. A characterization is given of the subgroups-D of G for which the map \( X \to X \cap D \), for all \( X \leq G \), defines a lattice-endomorphism.},
author = {Stonehewer, Stewart E., Zacher, Giovanni},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Group; Lattice; Lattice-endomorphism; dual-standard subgroups; non-periodic locally soluble groups},
language = {eng},
month = {5},
number = {2},
pages = {101-104},
publisher = {Accademia Nazionale dei Lincei},
title = {Dual-standard subgroups in nonperiodic locally soluble groups},
url = {http://eudml.org/doc/244189},
volume = {1},
year = {1990},
}
TY - JOUR
AU - Stonehewer, Stewart E.
AU - Zacher, Giovanni
TI - Dual-standard subgroups in nonperiodic locally soluble groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/5//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 2
SP - 101
EP - 104
AB - Let G be a non-periodic locally solvable group. A characterization is given of the subgroups-D of G for which the map \( X \to X \cap D \), for all \( X \leq G \), defines a lattice-endomorphism.
LA - eng
KW - Group; Lattice; Lattice-endomorphism; dual-standard subgroups; non-periodic locally soluble groups
UR - http://eudml.org/doc/244189
ER -
References
top- IVANOV, S. G., L-homomorphisms of locally solvable torsion-free groups. Mat. Zametki, 37, 1985, 627-635. Zbl0584.20019MR797702
- IVANOV, S. G., Standard and dually standard elements of the subgroup lattice of a group. Algebra i Logika, 8, 1969, 440-446. Zbl0266.20033MR280601
- STONEHEWER, S. E. - ZACHER, G., Lattice homomorphisms of non-periodic groups. J. Algebra, to appear. Zbl0741.20019MR1102568DOI10.1016/0021-8693(91)90191-A
- STONEHEWER, S. E. - ZACHER, G., Lattice homomorphisms of groups and dual standard subgroups. Springer Lecture Notes in Mathematics, to appear. Zbl0704.20025MR1068369
- STONEHEWER, S. E. - ZACHER, G., Dual-standard subgroups of finite and locally finite groups, to appear. Zbl0728.20026MR1085626DOI10.1007/BF02568364
- SUZUKI, M., Structure of a group and the structure of its lattice of subgroups. Springer Verlag, 1967. Zbl0070.25406MR83487
- ZAPPA, G., Sulla condizione perché un emitropismo inferiore tipico tra due gruppi sia un omotropismo. Giornale di Mat. Battaglini, 80, 1951, 80-101. Zbl0043.02501MR41139
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.