Dual-standard subgroups in nonperiodic locally soluble groups

Stewart E. Stonehewer; Giovanni Zacher

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1990)

  • Volume: 1, Issue: 2, page 101-104
  • ISSN: 1120-6330

Abstract

top
Let G be a non-periodic locally solvable group. A characterization is given of the subgroups-D of G for which the map X X D , for all X G , defines a lattice-endomorphism.

How to cite

top

Stonehewer, Stewart E., and Zacher, Giovanni. "Dual-standard subgroups in nonperiodic locally soluble groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.2 (1990): 101-104. <http://eudml.org/doc/244189>.

@article{Stonehewer1990,
abstract = {Let G be a non-periodic locally solvable group. A characterization is given of the subgroups-D of G for which the map \( X \to X \cap D \), for all \( X \leq G \), defines a lattice-endomorphism.},
author = {Stonehewer, Stewart E., Zacher, Giovanni},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Group; Lattice; Lattice-endomorphism; dual-standard subgroups; non-periodic locally soluble groups},
language = {eng},
month = {5},
number = {2},
pages = {101-104},
publisher = {Accademia Nazionale dei Lincei},
title = {Dual-standard subgroups in nonperiodic locally soluble groups},
url = {http://eudml.org/doc/244189},
volume = {1},
year = {1990},
}

TY - JOUR
AU - Stonehewer, Stewart E.
AU - Zacher, Giovanni
TI - Dual-standard subgroups in nonperiodic locally soluble groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/5//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 2
SP - 101
EP - 104
AB - Let G be a non-periodic locally solvable group. A characterization is given of the subgroups-D of G for which the map \( X \to X \cap D \), for all \( X \leq G \), defines a lattice-endomorphism.
LA - eng
KW - Group; Lattice; Lattice-endomorphism; dual-standard subgroups; non-periodic locally soluble groups
UR - http://eudml.org/doc/244189
ER -

References

top
  1. IVANOV, S. G., L-homomorphisms of locally solvable torsion-free groups. Mat. Zametki, 37, 1985, 627-635. Zbl0584.20019MR797702
  2. IVANOV, S. G., Standard and dually standard elements of the subgroup lattice of a group. Algebra i Logika, 8, 1969, 440-446. Zbl0266.20033MR280601
  3. STONEHEWER, S. E. - ZACHER, G., Lattice homomorphisms of non-periodic groups. J. Algebra, to appear. Zbl0741.20019MR1102568DOI10.1016/0021-8693(91)90191-A
  4. STONEHEWER, S. E. - ZACHER, G., Lattice homomorphisms of groups and dual standard subgroups. Springer Lecture Notes in Mathematics, to appear. Zbl0704.20025MR1068369
  5. STONEHEWER, S. E. - ZACHER, G., Dual-standard subgroups of finite and locally finite groups, to appear. Zbl0728.20026MR1085626DOI10.1007/BF02568364
  6. SUZUKI, M., Structure of a group and the structure of its lattice of subgroups. Springer Verlag, 1967. Zbl0070.25406MR83487
  7. ZAPPA, G., Sulla condizione perché un emitropismo inferiore tipico tra due gruppi sia un omotropismo. Giornale di Mat. Battaglini, 80, 1951, 80-101. Zbl0043.02501MR41139

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.