On some properties of doubly-periodic words

Claudio Baiocchi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1997)

  • Volume: 8, Issue: 1, page 39-47
  • ISSN: 1120-6330

Abstract

top
We study the functional equation: 1 A B C = C D A where A , B , C and D are words over an alphabet A . In particular we prove a «structure result» for the inner factors B , D : for suitably chosen words X , Y , Z one has: 2 B = X Y Z , D = Z Y X 2 B = X Y Z , D = Z Y X 2 B = X Y Z , D = Z Y X 2 B = X Y Z , D = Z Y X . It is a generalization of the Lyndon-Schützenberger's Theorem (see [7]): if in (1) A or C is empty, formula (2) holds true with one among X , Y , Z which can be chosen empty.

How to cite

top

Baiocchi, Claudio. "On some properties of doubly-periodic words." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.1 (1997): 39-47. <http://eudml.org/doc/244229>.

@article{Baiocchi1997,
abstract = {We study the functional equation: \( (1) \, ABC = CDA \) where \(A, B, C\) and \(D\) are words over an alphabet \( \mathcal\{A\} \). In particular we prove a «structure result» for the inner factors \(B, D\): for suitably chosen words \(X, Y, Z\) one has: \( (2) \, B =XYZ\), \(D = ZYX\)\( (2) \, B =XYZ\), \(D = ZYX\)\( (2) \, B =XYZ\), \(D = ZYX\)\( (2) \, B =XYZ\), \(D = ZYX\). It is a generalization of the Lyndon-Schützenberger's Theorem (see [7]): if in (1) \(A\) or \(C\) is empty, formula (2) holds true with one among \(X, Y, Z\) which can be chosen empty.},
author = {Baiocchi, Claudio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Words; Periodicity; Palindromy; doubly-periodic words},
language = {eng},
month = {4},
number = {1},
pages = {39-47},
publisher = {Accademia Nazionale dei Lincei},
title = {On some properties of doubly-periodic words},
url = {http://eudml.org/doc/244229},
volume = {8},
year = {1997},
}

TY - JOUR
AU - Baiocchi, Claudio
TI - On some properties of doubly-periodic words
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/4//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 1
SP - 39
EP - 47
AB - We study the functional equation: \( (1) \, ABC = CDA \) where \(A, B, C\) and \(D\) are words over an alphabet \( \mathcal{A} \). In particular we prove a «structure result» for the inner factors \(B, D\): for suitably chosen words \(X, Y, Z\) one has: \( (2) \, B =XYZ\), \(D = ZYX\)\( (2) \, B =XYZ\), \(D = ZYX\)\( (2) \, B =XYZ\), \(D = ZYX\)\( (2) \, B =XYZ\), \(D = ZYX\). It is a generalization of the Lyndon-Schützenberger's Theorem (see [7]): if in (1) \(A\) or \(C\) is empty, formula (2) holds true with one among \(X, Y, Z\) which can be chosen empty.
LA - eng
KW - Words; Periodicity; Palindromy; doubly-periodic words
UR - http://eudml.org/doc/244229
ER -

References

top
  1. DE LUCA, A., A combinatorial property of the Fibonacci word. Information Processing Letters, 12, 1981, 193-195. Zbl0468.20049MR632866DOI10.1016/0020-0190(81)90099-5
  2. DE LUCA, A., Sturmian words: new combinatorial results. In: J. ALMEIDA - G. M. S. GOMES - P. V. SILVA (eds.), Semigroups, Automata and Languages. World Scientific, 1996, 67-83. Zbl0917.20042MR1477723
  3. DE LUCA, A., Sturmian words: Structure, Combinatorics, and their Arithmetics. Theoretical Computer Science, special issue on Formal Language, to appear. Zbl0911.68098
  4. DE LUCA, A. - MIGNOSI, F., Some combinatorial properties of sturmian words. Theoretical Computer Science, 136, 1994, 361-385. Zbl0874.68245MR1311214DOI10.1016/0304-3975(94)00035-H
  5. FINE, N. J. - WILF, S. H., Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc., 16, 1965, 109-114. Zbl0131.30203MR174934
  6. LOTHAIRE, M., Combinatorics on Words. Addison-Wesley, Reading, MA, 1983. Zbl0514.20045MR675953
  7. LYNDON, R. C. - SCHÜTZENBERGER, M. P., On the equation a M = b N c P in a free group. Michigan Math. J., 9, 1962, 289-298. Zbl0106.02204MR162838
  8. PERDERSEN, A., Solution of Problem E 3156. The American Mathematical Monthly, 95, 1988, 954-955. 
  9. ROBINSON, P. M., Problem E 3156. The American Mathematical Monthly, 93, 1986, 482. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.