Finite groups with eight non-linear irreducible characters

Yakov Berkovich

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1994)

  • Volume: 5, Issue: 2, page 141-148
  • ISSN: 1120-6330

Abstract

top
This Note contains the complete list of finite groups, having exactly eight non-linear irreducible characters. In section 4 we consider in full details some typical cases.

How to cite

top

Berkovich, Yakov. "Finite groups with eight non-linear irreducible characters." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.2 (1994): 141-148. <http://eudml.org/doc/244264>.

@article{Berkovich1994,
abstract = {This Note contains the complete list of finite groups, having exactly eight non-linear irreducible characters. In section 4 we consider in full details some typical cases.},
author = {Berkovich, Yakov},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Finite groups; Representation of groups; Characters; representations; number of character degrees; finite groups; irreducible characters},
language = {eng},
month = {6},
number = {2},
pages = {141-148},
publisher = {Accademia Nazionale dei Lincei},
title = {Finite groups with eight non-linear irreducible characters},
url = {http://eudml.org/doc/244264},
volume = {5},
year = {1994},
}

TY - JOUR
AU - Berkovich, Yakov
TI - Finite groups with eight non-linear irreducible characters
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/6//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 2
SP - 141
EP - 148
AB - This Note contains the complete list of finite groups, having exactly eight non-linear irreducible characters. In section 4 we consider in full details some typical cases.
LA - eng
KW - Finite groups; Representation of groups; Characters; representations; number of character degrees; finite groups; irreducible characters
UR - http://eudml.org/doc/244264
ER -

References

top
  1. BERKOVICH, YA. G., Finite groups with a given number of conjugacy classes. Publ. Math. Debrecen, t. 33, fasc. 1-2, 1986, 107-123 (in Russian). Zbl0635.20011MR854622
  2. BERKOVICH, YA. G., Finite groups with the small number of irreducible non-linear characters. Izvestija Severo-Kavkazskogo nauchnogo Tzentra vyschei schkoly, Estestvennye nauki, 1 (57), 1987, 8-13 (in Russian). Zbl0649.20006MR907973
  3. BERKOVICH, YA. G., Finite groups with few non-linear irreducible characters. In: Questions of group theory and homological algebra. Jaroslavl, 1990, 97-107 (in Russian). Zbl0763.20003MR1169969
  4. BERKOVICH, YA. G. - ZHMUD, E. M., Characters of finite groups. To appear. Zbl0934.20009
  5. HANSEN, C. - NIELSEN, J. M., Finite groups having exactly two non-linear irreducible characters. Prep. Ser. Aarhus Univ., 33, 1981-1982, 1-10. Zbl0494.20003
  6. ISAACS, I. M. - PASSMAN, D. S., Groups with relatively few non-linear irreducible characters. Can. J. Math., vol. 20, 1968, 1451-1458. Zbl0165.34303MR235049
  7. ISAACS, I. M., Character theory of finite groups. Acad. Press, 1976. Zbl0337.20005MR460423
  8. SEITZ, G., Finite groups having only one irreducible representation of degree greater than one. Proc. Amer. Math. Soc., vol. 19, 1968, 459-461. Zbl0244.20010MR222160

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.