Finite groups with eight non-linear irreducible characters
- Volume: 5, Issue: 2, page 141-148
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBerkovich, Yakov. "Finite groups with eight non-linear irreducible characters." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.2 (1994): 141-148. <http://eudml.org/doc/244264>.
@article{Berkovich1994,
abstract = {This Note contains the complete list of finite groups, having exactly eight non-linear irreducible characters. In section 4 we consider in full details some typical cases.},
author = {Berkovich, Yakov},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Finite groups; Representation of groups; Characters; representations; number of character degrees; finite groups; irreducible characters},
language = {eng},
month = {6},
number = {2},
pages = {141-148},
publisher = {Accademia Nazionale dei Lincei},
title = {Finite groups with eight non-linear irreducible characters},
url = {http://eudml.org/doc/244264},
volume = {5},
year = {1994},
}
TY - JOUR
AU - Berkovich, Yakov
TI - Finite groups with eight non-linear irreducible characters
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/6//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 2
SP - 141
EP - 148
AB - This Note contains the complete list of finite groups, having exactly eight non-linear irreducible characters. In section 4 we consider in full details some typical cases.
LA - eng
KW - Finite groups; Representation of groups; Characters; representations; number of character degrees; finite groups; irreducible characters
UR - http://eudml.org/doc/244264
ER -
References
top- BERKOVICH, YA. G., Finite groups with a given number of conjugacy classes. Publ. Math. Debrecen, t. 33, fasc. 1-2, 1986, 107-123 (in Russian). Zbl0635.20011MR854622
- BERKOVICH, YA. G., Finite groups with the small number of irreducible non-linear characters. Izvestija Severo-Kavkazskogo nauchnogo Tzentra vyschei schkoly, Estestvennye nauki, 1 (57), 1987, 8-13 (in Russian). Zbl0649.20006MR907973
- BERKOVICH, YA. G., Finite groups with few non-linear irreducible characters. In: Questions of group theory and homological algebra. Jaroslavl, 1990, 97-107 (in Russian). Zbl0763.20003MR1169969
- BERKOVICH, YA. G. - ZHMUD, E. M., Characters of finite groups. To appear. Zbl0934.20009
- HANSEN, C. - NIELSEN, J. M., Finite groups having exactly two non-linear irreducible characters. Prep. Ser. Aarhus Univ., 33, 1981-1982, 1-10. Zbl0494.20003
- ISAACS, I. M. - PASSMAN, D. S., Groups with relatively few non-linear irreducible characters. Can. J. Math., vol. 20, 1968, 1451-1458. Zbl0165.34303MR235049
- ISAACS, I. M., Character theory of finite groups. Acad. Press, 1976. Zbl0337.20005MR460423
- SEITZ, G., Finite groups having only one irreducible representation of degree greater than one. Proc. Amer. Math. Soc., vol. 19, 1968, 459-461. Zbl0244.20010MR222160
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.