On the number of solutions of equation in a finite group
- Volume: 6, Issue: 1, page 5-12
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBerkovich, Yakov. "On the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite group." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 6.1 (1995): 5-12. <http://eudml.org/doc/244269>.
@article{Berkovich1995,
abstract = {Theorem A yields the condition under which the number of solutions of equation \( x^\{\{p\}^\{ k\}\} = 1 \) in a finite \( p \)-group is divisible by \( p^\{n + k\} \) (here \( n \) is a fixed positive integer). Theorem B which is due to Avinoam Mann generalizes the counting part of the Sylow Theorem. We show in Theorems C and D that congruences for the number of cyclic subgroups of order \( p^\{k\} \) which are true for abelian groups hold for more general finite groups (for example for groups with abelian Sylow \( p \)-subgroups).},
author = {Berkovich, Yakov},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Finite groups; p-subgroups; p-elements; number of solutions; congruences; number of cyclic subgroups; finite groups; groups with Abelian Sylow -subgroups},
language = {eng},
month = {3},
number = {1},
pages = {5-12},
publisher = {Accademia Nazionale dei Lincei},
title = {On the number of solutions of equation \( x^\{\{p\}^\{ k\}\} = 1 \) in a finite group},
url = {http://eudml.org/doc/244269},
volume = {6},
year = {1995},
}
TY - JOUR
AU - Berkovich, Yakov
TI - On the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite group
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1995/3//
PB - Accademia Nazionale dei Lincei
VL - 6
IS - 1
SP - 5
EP - 12
AB - Theorem A yields the condition under which the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite \( p \)-group is divisible by \( p^{n + k} \) (here \( n \) is a fixed positive integer). Theorem B which is due to Avinoam Mann generalizes the counting part of the Sylow Theorem. We show in Theorems C and D that congruences for the number of cyclic subgroups of order \( p^{k} \) which are true for abelian groups hold for more general finite groups (for example for groups with abelian Sylow \( p \)-subgroups).
LA - eng
KW - Finite groups; p-subgroups; p-elements; number of solutions; congruences; number of cyclic subgroups; finite groups; groups with Abelian Sylow -subgroups
UR - http://eudml.org/doc/244269
ER -
References
top- BERKOVICH, YA. G., On -groups of finite order. Sibirsk. Math. J., 9, 6, 1968, 1284-1306 (in Russian). MR241534
- BERKOVICH, YA. G., On the number of elements of given order in a finite -group. Israel J. Math., 73, 1991, 107-112. Zbl0734.20007MR1119932DOI10.1007/BF02773429
- BERKOVICH, YA. G., Counting theorems for finite -groups. Arch. Math., 59, 1992, 215-222. Zbl0807.20020MR1174398DOI10.1007/BF01197318
- BLACKBURN, N., Generalizations of certain elementary theorems on -groups. Proc. London Math. Soc., 11, 1961, 1-22. Zbl0102.01903MR122876
- DELIGNE, P., Congruences sur le nombre de sous-groupes d'ordre dans un groupe fini. Bull. Soc. Math. Belg., 18, 1966, 129-132. Zbl0154.02002MR202821
- HERZOG, M., Counting group elements of order modulo . Proc. Amer. Math. Soc., 66, 1977, 247-250. Zbl0378.20013MR466316
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.