Representations of s l q 3 at the roots of unity

Nicoletta Cantarini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1996)

  • Volume: 7, Issue: 4, page 201-212
  • ISSN: 1120-6330

Abstract

top
In this paper we study the irreducible finite dimensional representations of the quantized enveloping algebra U q g associated to g = s l 3 , at the roots of unity. It is known that these representations are parametrized, up to isomorphisms, by the conjugacy classes of the group G = S L 3 . We get a complete classification of the representations corresponding to the submaximal unipotent conjugacy class and therefore a proof of the De Concini-Kac conjecture about the dimension of the U q g -modules at the roots of 1 in the case of g = s l 3 .

How to cite

top

Cantarini, Nicoletta. "Representations of \( sl_{q} (3) \) at the roots of unity." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 7.4 (1996): 201-212. <http://eudml.org/doc/244290>.

@article{Cantarini1996,
abstract = {In this paper we study the irreducible finite dimensional representations of the quantized enveloping algebra \( \mathcal\{U\}\_\{q\} (g) \) associated to \( g = sl (3) \), at the roots of unity. It is known that these representations are parametrized, up to isomorphisms, by the conjugacy classes of the group \( G = SL(3) \). We get a complete classification of the representations corresponding to the submaximal unipotent conjugacy class and therefore a proof of the De Concini-Kac conjecture about the dimension of the \( \mathcal\{U\}\_\{q\} (g) \)-modules at the roots of \( 1 \) in the case of \( g = sl (3) \).},
author = {Cantarini, Nicoletta},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Enveloping algebra; Representation; Cartan matrix; irreducible representation; quantized universal enveloping algebras; subregular unipotent conjugacy class; De Concini-Kac-Procesi conjecture},
language = {eng},
month = {12},
number = {4},
pages = {201-212},
publisher = {Accademia Nazionale dei Lincei},
title = {Representations of \( sl\_\{q\} (3) \) at the roots of unity},
url = {http://eudml.org/doc/244290},
volume = {7},
year = {1996},
}

TY - JOUR
AU - Cantarini, Nicoletta
TI - Representations of \( sl_{q} (3) \) at the roots of unity
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1996/12//
PB - Accademia Nazionale dei Lincei
VL - 7
IS - 4
SP - 201
EP - 212
AB - In this paper we study the irreducible finite dimensional representations of the quantized enveloping algebra \( \mathcal{U}_{q} (g) \) associated to \( g = sl (3) \), at the roots of unity. It is known that these representations are parametrized, up to isomorphisms, by the conjugacy classes of the group \( G = SL(3) \). We get a complete classification of the representations corresponding to the submaximal unipotent conjugacy class and therefore a proof of the De Concini-Kac conjecture about the dimension of the \( \mathcal{U}_{q} (g) \)-modules at the roots of \( 1 \) in the case of \( g = sl (3) \).
LA - eng
KW - Enveloping algebra; Representation; Cartan matrix; irreducible representation; quantized universal enveloping algebras; subregular unipotent conjugacy class; De Concini-Kac-Procesi conjecture
UR - http://eudml.org/doc/244290
ER -

References

top
  1. DE CONCINI, C. - KAC, V. G., Representations of quantum groups at roots of 1. Progress in Math., 92, Birkhäuser, 1990, 471-506. Zbl0738.17008MR1103601
  2. DE CONCINI, C. - KAC, V. G., Representations of quantum groups at roots of 1: reduction to the exceptional case. International Journal of Modern Physics A, vol. 7, Suppl. 1A, 1992, 141-149. Zbl0867.17007MR1187546
  3. DE CONCINI, C. - KAC, V. G. - PROCESI, C., Quantum coadjoint action. Journal of the American Mathematical Society, 5, 1992, 151-190. Zbl0747.17018MR1124981DOI10.2307/2152754
  4. DE CONCINI, C. - KAC, V. G. - PROCESI, C., Some remarkable degenerations of quantum groups. Comm. Math. Phys., 157, 1993, 405-427. Zbl0795.17006MR1244875
  5. DRINFELD, V. G., Hopf algebras and quantum Yang-Baxter equation. Soviet. Math. Dokl., 32, 1985, 254-258. Zbl0588.17015MR802128
  6. DRINFELD, V. G., Quantum groups. Proc. ICM, Berkeley, 1, 1986, 798-820. MR934283
  7. HESSELINK, W., The normality of closures of orbits in a Lie algebra. Commentarii Math. Helvet., 54, 1979, 105-110. Zbl0395.14014MR522033DOI10.1007/BF02566258
  8. JIMBO, M., A q -difference analogue of U g and the Yang-Baxter equation. Lett. Math. Phys., 10, 1985, 63-69. Zbl0587.17004MR797001DOI10.1007/BF00704588
  9. LEVENDORSKEI, S. Z. - SOIBELMAN, YA. S., Algebras of functions on compact quantum groups, Schubert cells and quantum tori. Comm. Math. Phys., 139, 1991, 141-170. Zbl0729.17011MR1116413
  10. LUSZTIG, G., Quantum groups at roots of 1. Geom. Ded., 35, 1990, 89-114. Zbl0714.17013MR1066560DOI10.1007/BF00147341
  11. TITS, J., Sur les constants de structure et le théorème d'existence des algebres de Lie semi-simple. Publ. Math. IHES, 31, 1966, 21-58. Zbl0145.25804MR214638

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.