On manifolds diffeomorphic on the complement of a point

Stefano De Michelis

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1991)

  • Volume: 2, Issue: 3, page 229-233
  • ISSN: 1120-6330

Abstract

top
We prove that four manifolds diffeomorphic on the complement of a point have the same Donaldson invariants.

How to cite

top

De Michelis, Stefano. "On manifolds diffeomorphic on the complement of a point." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.3 (1991): 229-233. <http://eudml.org/doc/244291>.

@article{DeMichelis1991,
abstract = {We prove that four manifolds diffeomorphic on the complement of a point have the same Donaldson invariants.},
author = {De Michelis, Stefano},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Manifolds; Instantons; Donaldson polynomials; nondiffeomorphic smooth 4-manifolds; diffeomorphic on the complement of a point; periodic ends; gauge theory},
language = {eng},
month = {9},
number = {3},
pages = {229-233},
publisher = {Accademia Nazionale dei Lincei},
title = {On manifolds diffeomorphic on the complement of a point},
url = {http://eudml.org/doc/244291},
volume = {2},
year = {1991},
}

TY - JOUR
AU - De Michelis, Stefano
TI - On manifolds diffeomorphic on the complement of a point
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/9//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 3
SP - 229
EP - 233
AB - We prove that four manifolds diffeomorphic on the complement of a point have the same Donaldson invariants.
LA - eng
KW - Manifolds; Instantons; Donaldson polynomials; nondiffeomorphic smooth 4-manifolds; diffeomorphic on the complement of a point; periodic ends; gauge theory
UR - http://eudml.org/doc/244291
ER -

References

top
  1. DE MICHELIS, S. - FREEDMAN, M., Uncountably many exotic R 4 's in Standard 4-space. Preprint. 
  2. DONALDSON, S. - SULLIVAN, D., Quasiconformal 4 Manifolds. Preprint. Zbl0704.57008MR1032074DOI10.1007/BF02392736
  3. KERVAIRE, M. - MILNOR, J., Groups of Homotopy Spheres. I. Annals of Mathematics, 77, 1963, 504-537. Zbl0115.40505MR148075
  4. MILNOR, J., Lectures on the h-cobordism Theorem. Princeton University Press, Princeton. 1965. Zbl0161.20302MR190942
  5. TAUBES, C., Gauge Theory on Asymptotically Periodic Four Manifolds. Journal of Differential Geometry, 25, 1987, 363-430. Zbl0615.57009MR882829
  6. BROWN, M., Unpublished result, 1964. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.