On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in K d × R n - d , where K d is a d-dimensional cone

Vladimir A. Kozlov; Vladimir G. Maz'ya

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1996)

  • Volume: 7, Issue: 1, page 17-30
  • ISSN: 1120-6330

Abstract

top
A description of all «power-logarithmic» solutions to the homogeneous Dirichlet problem for strongly elliptic systems in a n -dimensional cone K = K d × R n - d is given, where K d is an arbitrary open cone in R d and n > d > 1 .

How to cite

top

Kozlov, Vladimir A., and Maz'ya, Vladimir G.. "On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in \( K_{d} \times \mathbb{R}^{n-d} \), where \( K_{d} \) is a d-dimensional cone." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 7.1 (1996): 17-30. <http://eudml.org/doc/244292>.

@article{Kozlov1996,
abstract = {A description of all «power-logarithmic» solutions to the homogeneous Dirichlet problem for strongly elliptic systems in a \( n \)-dimensional cone \( K = K\_\{d\} \times \mathbb\{R\}^\{n-d\} \) is given, where \( K\_\{d\} \) is an arbitrary open cone in \( \mathbb\{R\}^\{d\} \) and \( n > d > 1 \).},
author = {Kozlov, Vladimir A., Maz'ya, Vladimir G.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Elliptic systems; Boundary singularities; Asymptotics of solutions; singularities of the boundary},
language = {eng},
month = {5},
number = {1},
pages = {17-30},
publisher = {Accademia Nazionale dei Lincei},
title = {On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in \( K\_\{d\} \times \mathbb\{R\}^\{n-d\} \), where \( K\_\{d\} \) is a d-dimensional cone},
url = {http://eudml.org/doc/244292},
volume = {7},
year = {1996},
}

TY - JOUR
AU - Kozlov, Vladimir A.
AU - Maz'ya, Vladimir G.
TI - On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in \( K_{d} \times \mathbb{R}^{n-d} \), where \( K_{d} \) is a d-dimensional cone
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1996/5//
PB - Accademia Nazionale dei Lincei
VL - 7
IS - 1
SP - 17
EP - 30
AB - A description of all «power-logarithmic» solutions to the homogeneous Dirichlet problem for strongly elliptic systems in a \( n \)-dimensional cone \( K = K_{d} \times \mathbb{R}^{n-d} \) is given, where \( K_{d} \) is an arbitrary open cone in \( \mathbb{R}^{d} \) and \( n > d > 1 \).
LA - eng
KW - Elliptic systems; Boundary singularities; Asymptotics of solutions; singularities of the boundary
UR - http://eudml.org/doc/244292
ER -

References

top
  1. KONDRAT'EV, V. A., Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Ob., 16, 1967, 209-292; English transl. in: Trans. Moscow Math. Soc., 16, 1967, 227-313. Zbl0194.13405MR226187
  2. MAZ'YA, V. G. - PLAMENEVSKII, B. A., The coefficients in the asymptotic expansion of the solutions of elliptic boundary value problems in a cone. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 52, 1975, 110-127; English transl. in: J. Soviet Math., 9, 1978, no. 5. MR407445
  3. MAZ'YA, V. G. - PLAMENEVSKII, B. A., On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points. Math. Nachr., 76, 1977, 29-66; English transl. in: Amer. Math. Soc. Transl. (2), vol 123, 1984, 57-88. Zbl0554.35036MR601608

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.