On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in , where is a d-dimensional cone
Vladimir A. Kozlov; Vladimir G. Maz'ya
- Volume: 7, Issue: 1, page 17-30
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topKozlov, Vladimir A., and Maz'ya, Vladimir G.. "On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in \( K_{d} \times \mathbb{R}^{n-d} \), where \( K_{d} \) is a d-dimensional cone." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 7.1 (1996): 17-30. <http://eudml.org/doc/244292>.
@article{Kozlov1996,
abstract = {A description of all «power-logarithmic» solutions to the homogeneous Dirichlet problem for strongly elliptic systems in a \( n \)-dimensional cone \( K = K\_\{d\} \times \mathbb\{R\}^\{n-d\} \) is given, where \( K\_\{d\} \) is an arbitrary open cone in \( \mathbb\{R\}^\{d\} \) and \( n > d > 1 \).},
author = {Kozlov, Vladimir A., Maz'ya, Vladimir G.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Elliptic systems; Boundary singularities; Asymptotics of solutions; singularities of the boundary},
language = {eng},
month = {5},
number = {1},
pages = {17-30},
publisher = {Accademia Nazionale dei Lincei},
title = {On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in \( K\_\{d\} \times \mathbb\{R\}^\{n-d\} \), where \( K\_\{d\} \) is a d-dimensional cone},
url = {http://eudml.org/doc/244292},
volume = {7},
year = {1996},
}
TY - JOUR
AU - Kozlov, Vladimir A.
AU - Maz'ya, Vladimir G.
TI - On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in \( K_{d} \times \mathbb{R}^{n-d} \), where \( K_{d} \) is a d-dimensional cone
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1996/5//
PB - Accademia Nazionale dei Lincei
VL - 7
IS - 1
SP - 17
EP - 30
AB - A description of all «power-logarithmic» solutions to the homogeneous Dirichlet problem for strongly elliptic systems in a \( n \)-dimensional cone \( K = K_{d} \times \mathbb{R}^{n-d} \) is given, where \( K_{d} \) is an arbitrary open cone in \( \mathbb{R}^{d} \) and \( n > d > 1 \).
LA - eng
KW - Elliptic systems; Boundary singularities; Asymptotics of solutions; singularities of the boundary
UR - http://eudml.org/doc/244292
ER -
References
top- KONDRAT'EV, V. A., Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Ob., 16, 1967, 209-292; English transl. in: Trans. Moscow Math. Soc., 16, 1967, 227-313. Zbl0194.13405MR226187
- MAZ'YA, V. G. - PLAMENEVSKII, B. A., The coefficients in the asymptotic expansion of the solutions of elliptic boundary value problems in a cone. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 52, 1975, 110-127; English transl. in: J. Soviet Math., 9, 1978, no. 5. MR407445
- MAZ'YA, V. G. - PLAMENEVSKII, B. A., On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points. Math. Nachr., 76, 1977, 29-66; English transl. in: Amer. Math. Soc. Transl. (2), vol 123, 1984, 57-88. Zbl0554.35036MR601608
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.