Line bundles with
- Volume: 2, Issue: 1, page 83-90
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topDe Michelis, Stefano. "Line bundles with \( c_1(L)^2=0 \)." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.1 (1991): 83-90. <http://eudml.org/doc/244297>.
@article{DeMichelis1991,
abstract = {We prove that on a \( CW \)-complex the obstruction for a line bundle \( L \) to be the fractional power of a suitable pullback of the Hopf bundle on a 2-dimensional sphere is the vanishing of the square of the first Chern class of \( L \). On the other hand we show that if one looks at integral powers then further secondary obstructions exist.},
author = {De Michelis, Stefano},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hopf bundle; Chern classes; Obstructions; obstruction; fractional power; Chern class; secondary obstructions},
language = {eng},
month = {3},
number = {1},
pages = {83-90},
publisher = {Accademia Nazionale dei Lincei},
title = {Line bundles with \( c\_1(L)^2=0 \)},
url = {http://eudml.org/doc/244297},
volume = {2},
year = {1991},
}
TY - JOUR
AU - De Michelis, Stefano
TI - Line bundles with \( c_1(L)^2=0 \)
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/3//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 1
SP - 83
EP - 90
AB - We prove that on a \( CW \)-complex the obstruction for a line bundle \( L \) to be the fractional power of a suitable pullback of the Hopf bundle on a 2-dimensional sphere is the vanishing of the square of the first Chern class of \( L \). On the other hand we show that if one looks at integral powers then further secondary obstructions exist.
LA - eng
KW - Hopf bundle; Chern classes; Obstructions; obstruction; fractional power; Chern class; secondary obstructions
UR - http://eudml.org/doc/244297
ER -
References
top- BROWDER, W., Surgery on simply connected manifolds. Springer Verlag, Berlin1972. Zbl0239.57016MR358813
- MADSEN, I. - MILGRAM, RJ., The universal smooth surgery class. Comm. Math. Helv., 50, 1975, 281-310. Zbl0328.55011MR383404
- STONG, R. E., Notes on cobordism theory. Princeton University Press, Princeton1968. Zbl0181.26604MR248858
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.