Generalization of Fueter's result to R n + 1

Tao Qian

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1997)

  • Volume: 8, Issue: 2, page 111-117
  • ISSN: 1120-6330

Abstract

top
Fueter's result (see [6,8]) on inducing quaternionic regular functions from holomorphic functions of a complex variable is extended to Euclidean spaces R n + 1 . It is then proved to be consistent with M. Sce's generalization for n being odd integers [6].

How to cite

top

Qian, Tao. "Generalization of Fueter's result to \( \mathbb{R}^{n+1} \)." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.2 (1997): 111-117. <http://eudml.org/doc/244304>.

@article{Qian1997,
abstract = {Fueter's result (see [6,8]) on inducing quaternionic regular functions from holomorphic functions of a complex variable is extended to Euclidean spaces \( \mathbb\{R\}^\{n+1\} \). It is then proved to be consistent with M. Sce's generalization for \( n \) being odd integers [6].},
author = {Qian, Tao},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Clifford analysis; Harmonic analysis; Complex analysis; Singular integrals; Fourier multiplier; Fueter's mapping},
language = {eng},
month = {7},
number = {2},
pages = {111-117},
publisher = {Accademia Nazionale dei Lincei},
title = {Generalization of Fueter's result to \( \mathbb\{R\}^\{n+1\} \)},
url = {http://eudml.org/doc/244304},
volume = {8},
year = {1997},
}

TY - JOUR
AU - Qian, Tao
TI - Generalization of Fueter's result to \( \mathbb{R}^{n+1} \)
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/7//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 2
SP - 111
EP - 117
AB - Fueter's result (see [6,8]) on inducing quaternionic regular functions from holomorphic functions of a complex variable is extended to Euclidean spaces \( \mathbb{R}^{n+1} \). It is then proved to be consistent with M. Sce's generalization for \( n \) being odd integers [6].
LA - eng
KW - Clifford analysis; Harmonic analysis; Complex analysis; Singular integrals; Fourier multiplier; Fueter's mapping
UR - http://eudml.org/doc/244304
ER -

References

top
  1. DELANGHE, R. - SOMMEN, F. - SOUCEK, V., Clifford algebra and spinor valued functions: A function theory for Dirac operator. Kluwer, Dordrecht1992. Zbl0747.53001MR1169463DOI10.1007/978-94-011-2922-0
  2. MCINTOSH, A. - QIAN, T. - RYAN, J., Spherical convolution operators on star-shaped Lipschitz surfaces. In preparation. 
  3. PEETRE, J. - QIAN, T., Möbius covariance of iterated Dirac operators. J. Austral. Math. Soc., Series A, 56, 1994, 1-12. Zbl1043.31500MR1271529
  4. QIAN, T., Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space. Preprint. Zbl0921.42012MR1619732DOI10.1007/s002080050162
  5. RINEHART, R. F., Elements of a theory of intrinsic functions on algebras. Duke Math. J., 32, 1965, 1-19. Zbl0095.28103MR120349
  6. SCE, M., Osservazioni sulle serie di potenze nei moduli quadratici. Atti Acc. Lincei Rend. fis., s. 8, 23, 1957, 220-225. Zbl0084.28302MR97386
  7. STEIN, E. M., Singular integrals and differentiability properties of functions. Princeton University Press, 1970. Zbl0207.13501MR290095
  8. SUDBERY, A., Quaternionic analysis. Math. Proc. Camb. Phil. Soc., 85, 1979, 199-225. Zbl0399.30038MR516081DOI10.1017/S0305004100055638

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.