Levi-equation in higher dimensions

Zbginiew Slodkowski; Giuseppe Tomassini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1991)

  • Volume: 2, Issue: 4, page 277-279
  • ISSN: 1120-6330

Abstract

top
We announce some results concerning the Dirichlet problem for the Levi-equation in C n . We consider for the sake of simplicity the case n = 3 .

How to cite

top

Slodkowski, Zbginiew, and Tomassini, Giuseppe. "Levi-equation in higher dimensions." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.4 (1991): 277-279. <http://eudml.org/doc/244335>.

@article{Slodkowski1991,
abstract = {We announce some results concerning the Dirichlet problem for the Levi-equation in \( \mathbb\{C\}^\{n\} \). We consider for the sake of simplicity the case \( n = 3 \).},
author = {Slodkowski, Zbginiew, Tomassini, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Levi form; Monge-Ampère equation; Dirichlet problem},
language = {eng},
month = {12},
number = {4},
pages = {277-279},
publisher = {Accademia Nazionale dei Lincei},
title = {Levi-equation in higher dimensions},
url = {http://eudml.org/doc/244335},
volume = {2},
year = {1991},
}

TY - JOUR
AU - Slodkowski, Zbginiew
AU - Tomassini, Giuseppe
TI - Levi-equation in higher dimensions
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/12//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 4
SP - 277
EP - 279
AB - We announce some results concerning the Dirichlet problem for the Levi-equation in \( \mathbb{C}^{n} \). We consider for the sake of simplicity the case \( n = 3 \).
LA - eng
KW - Levi form; Monge-Ampère equation; Dirichlet problem
UR - http://eudml.org/doc/244335
ER -

References

top
  1. BEDFORD, E. - GAVEAU, B., Envelopes of holomorphy of certain 2-spheres in C 2 . Amer. J. Math., 105, 1983, 975-1009. Zbl0535.32008MR708370DOI10.2307/2374301
  2. BEDFORD, E. - KLINGENBERG, W., On the envelope of holomorphy of a 2-sphere in C 2 . To appear. Zbl0736.32009MR1094437DOI10.2307/2939272
  3. GAVEAU, B., Méthodes de contrôle optimal en analyse complexe. I. Résolution d'équations de Monge-Ampère. J. Funct. Anal., 25, 1977, 391-411. Zbl0356.35071MR457783
  4. GILBARG, D. - TRUDINGER, N. S., Elliptic partial differential equations of second order. Grundlehren Math. Wiss., 224, Springer, 1983. Zbl0562.35001MR737190
  5. LUPACCIOLU, G., A Theorem on holomorphic extension of CR-functions. Pacific J. Math., vol. 124, n. 1, 1986, 177-191. Zbl0597.32014MR850675
  6. SLODKOWSKI, Z., Local maximum property and q-plurisubharmonic functions in uniform algebras. J. Math. Anal. Appl., 115, 1986, 105-130. Zbl0646.46047MR835588DOI10.1016/0022-247X(86)90027-2
  7. SLODKOWSKI, Z. - TOMASSINI, G., Weak solutions for the Levi-equation and envelope of holomorphy. J. Funct. Anal., to appear. Zbl0744.35015MR1136942DOI10.1016/0022-1236(91)90164-Z
  8. TOMASSINI, G., Geometric properties of solutions of the Levi equation. Ann Mat. Pura Appl., (IV), vol. 152, 1988, 331-344. Zbl0681.35017MR980986DOI10.1007/BF01766155

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.