Some applications of optimal control theory of distributed systems
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 8, page 195-218
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBermudez, Alfredo. "Some applications of optimal control theory of distributed systems." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 195-218. <http://eudml.org/doc/244635>.
@article{Bermudez2002,
abstract = {In this paper we present some applications of the J.-L. Lions’ optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control},
author = {Bermudez, Alfredo},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {optimal control; sterilization; canned food; water pollution; noise reduction},
language = {eng},
pages = {195-218},
publisher = {EDP-Sciences},
title = {Some applications of optimal control theory of distributed systems},
url = {http://eudml.org/doc/244635},
volume = {8},
year = {2002},
}
TY - JOUR
AU - Bermudez, Alfredo
TI - Some applications of optimal control theory of distributed systems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 195
EP - 218
AB - In this paper we present some applications of the J.-L. Lions’ optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control
LA - eng
KW - optimal control; sterilization; canned food; water pollution; noise reduction
UR - http://eudml.org/doc/244635
ER -
References
top- [1] L. Álvarez–Vázquez and A. Martínez, Modelling and control of natural convection in canned foods. IMA J. Appl. Math. 63 (1999) 246-265. Zbl0936.93039
- [2] K.H. Baek and S.J. Elliot, Natural algorithms for choosing source locations in active control systems. J. Sound Vibr. 186 (1995) 245-267. Zbl1049.76589
- [3] Beranek and Ver, Noise and vibration control engineering. Principles and applications. John Wiley and Sons, New York (1992).
- [4] A. Bermúdez, Mathematical techniques for some environmental problems related to water pollution control, in Mathematics, Climate and Environment, edited by J.I. Díaz, J.-L. Lions. Masson, Paris (1993). Zbl0806.92022MR1263041
- [5] A. Bermúdez and A. Martínez, A state constrained optimal control problem related to the sterilization of canned foods. Automatica. The IFAC Journal 30 (1994) 319-329. Zbl0800.93940MR1261708
- [6] A. Bermúdez, A. Martínez and C. Rodríguez, Un problème de contrôle ponctuel lié à l’emplacement optimal d’émissaires d’évacuation sous-marine. C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 515-518. Zbl0735.49033
- [7] A. Bermúdez, C. Rodríguez and M.A. Vilar, Solving shallow water equations by a mixed implicit finite element method. IMA J. Num. Anal. 11 (1991) 79-97. Zbl0713.76069MR1089549
- [8] A. Bermúdez and C. Saguez, Optimal control of a Signorini problem. SIAM J. Control Optim. 25 (1987) 576-582. Zbl0617.49011MR885186
- [9] J.F. Bonnans and E. Casas, Contrôle de systèmes elliptiques semilinéaires comportant des contraintes distribuées sur l’état, in Nonlinear partial differential equations and their applications, edited by H. Brezis and J.-L. Lions. Pitman (1988). Zbl0656.49011
- [10] E. Casas, estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627-632. Zbl0561.65071MR812624
- [11] E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24 (1986) 1309-1318. Zbl0606.49017MR861100
- [12] E. Casas, Pontryagin’s principle for state constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297-1327. Zbl0893.49017
- [13] J.F. Bonnans, An introduction to Newton type algorithms for nonlinearly constrained optimization problems. Birkhauser-Verlag, Basel, Internat. Ser. Numer. Math. 87 (1989) 1-17. Zbl0683.90075MR1001163
- [14] E. Casas and C. Pola , PLCBAS User’s Guide VERSION 1.1. Computación 1. Universidad de Cantabria, Santander, Spain (1989).
- [15] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysys, Vol. II, edited by P.G. Ciarlet and J.-L. Lions. North-Holand (1991). Zbl0875.65086MR1115237
- [16] E. Di Benedetto, On the local behaviour of solutions of degenerate parabolic equatons with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986) 487-535. Zbl0635.35052MR881103
- [17] I. Ekeland and R. Temam, Convex analysis and variational problems. North-Holland, Amsterdam (1976). Zbl0322.90046MR463994
- [18] P. Gamallo, Contribución al estudio matemático de problemas de simulación y control activo del ruido, Ph. Thesis. Universidade de Santiago de Compostela, Spain (2002).
- [19] J. Herskovits, A two stage feasible directions algorithm for nonlinear constrained optimization. Math. Programming 36 (1986) 19-38. Zbl0623.90070MR862066
- [20] J. Herskovits, A feasible directions interior point technique for nonlinear optimization. J. Optim. Theory Appl. 99 (1998) 121-146. Zbl0911.90303MR1653257
- [21] J.B. Hiriart–Urruty and C. Lemarechal, Convex analysis and Minimization Algorithms. Springer-Verlag, Berlin, Heildelberg (1993). Zbl0795.49002
- [22] B. Hu and J. Yong, Pontriagin maximum principle for semilinear and quasilinear parabolic equations with pointwise state constraints. SIAM J. Control Optim. 33 (1995) 1857-1880. Zbl0840.49012MR1358099
- [23] O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Uraltseva, Linear and quasilinear equations of parabolic type. Amer. Math. Soc., Providence, Transl. Math. Monogr. 23 (1968). Zbl0174.15403
- [24] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968). Zbl0179.41801MR244606
- [25] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
- [26] P.A. Nelson and S.J. Elliot, Active Control of Sound. Academic Press, London (1999).
- [27] G.I. Marchuk, Mathematical models in environmental problems. North Holland, Amsterdam (1986). Zbl0597.90001MR842433
- [28] A. Martínez, C. Rodríguez and M.E. Vázquez–Méndez, Theoretical and numerical analysis of an optimal control problem related to waste-water treatment. SIAM J. Control Optim. 38 (2000) 1534-1553. Zbl0961.49002
- [29] C. Olin Ball and F.C.W. Olson, Sterilization in food technology. Mc Graw Hill, New York (1957).
- [30] R.I. Pérez Martín, J.R. Banga and J.M. Gallardo, Simulation of thermal processes in tuna can manufacture. Instituto de Investigaciones Marinas (C.S.I.C.), Vigo, Spain (1989).
- [31] E.R. Panier, A.L. Tits and J. Herskovits, A QP-Free, Globally Convergent, Locally Superlinearly Convergent Algorithm for Inequality Constrained Optimization. SIAM J. Control Optim. 26 (1988) 788-810. Zbl0651.90072MR948647
- [32] R. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973) 317-327. Zbl0255.65037MR337032
- [33] M.E. Vázquez–Méndez, Contribución a la resolución numérica de modelos para el estudio de la contaminación de aguas. Master thesis. Dept. Matemática Aplicada. Univ. Santiago de Compostela, Spain (1992).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.