Some applications of optimal control theory of distributed systems

Alfredo Bermudez

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 8, page 195-218
  • ISSN: 1292-8119

Abstract

top
In this paper we present some applications of the J.-L. Lions’ optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control

How to cite

top

Bermudez, Alfredo. "Some applications of optimal control theory of distributed systems." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 195-218. <http://eudml.org/doc/244635>.

@article{Bermudez2002,
abstract = {In this paper we present some applications of the J.-L. Lions’ optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control},
author = {Bermudez, Alfredo},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {optimal control; sterilization; canned food; water pollution; noise reduction},
language = {eng},
pages = {195-218},
publisher = {EDP-Sciences},
title = {Some applications of optimal control theory of distributed systems},
url = {http://eudml.org/doc/244635},
volume = {8},
year = {2002},
}

TY - JOUR
AU - Bermudez, Alfredo
TI - Some applications of optimal control theory of distributed systems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 195
EP - 218
AB - In this paper we present some applications of the J.-L. Lions’ optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control
LA - eng
KW - optimal control; sterilization; canned food; water pollution; noise reduction
UR - http://eudml.org/doc/244635
ER -

References

top
  1. [1] L. Álvarez–Vázquez and A. Martínez, Modelling and control of natural convection in canned foods. IMA J. Appl. Math. 63 (1999) 246-265. Zbl0936.93039
  2. [2] K.H. Baek and S.J. Elliot, Natural algorithms for choosing source locations in active control systems. J. Sound Vibr. 186 (1995) 245-267. Zbl1049.76589
  3. [3] Beranek and Ver, Noise and vibration control engineering. Principles and applications. John Wiley and Sons, New York (1992). 
  4. [4] A. Bermúdez, Mathematical techniques for some environmental problems related to water pollution control, in Mathematics, Climate and Environment, edited by J.I. Díaz, J.-L. Lions. Masson, Paris (1993). Zbl0806.92022MR1263041
  5. [5] A. Bermúdez and A. Martínez, A state constrained optimal control problem related to the sterilization of canned foods. Automatica. The IFAC Journal 30 (1994) 319-329. Zbl0800.93940MR1261708
  6. [6] A. Bermúdez, A. Martínez and C. Rodríguez, Un problème de contrôle ponctuel lié à l’emplacement optimal d’émissaires d’évacuation sous-marine. C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 515-518. Zbl0735.49033
  7. [7] A. Bermúdez, C. Rodríguez and M.A. Vilar, Solving shallow water equations by a mixed implicit finite element method. IMA J. Num. Anal. 11 (1991) 79-97. Zbl0713.76069MR1089549
  8. [8] A. Bermúdez and C. Saguez, Optimal control of a Signorini problem. SIAM J. Control Optim. 25 (1987) 576-582. Zbl0617.49011MR885186
  9. [9] J.F. Bonnans and E. Casas, Contrôle de systèmes elliptiques semilinéaires comportant des contraintes distribuées sur l’état, in Nonlinear partial differential equations and their applications, edited by H. Brezis and J.-L. Lions. Pitman (1988). Zbl0656.49011
  10. [10] E. Casas, L 2 estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627-632. Zbl0561.65071MR812624
  11. [11] E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24 (1986) 1309-1318. Zbl0606.49017MR861100
  12. [12] E. Casas, Pontryagin’s principle for state constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297-1327. Zbl0893.49017
  13. [13] J.F. Bonnans, An introduction to Newton type algorithms for nonlinearly constrained optimization problems. Birkhauser-Verlag, Basel, Internat. Ser. Numer. Math. 87 (1989) 1-17. Zbl0683.90075MR1001163
  14. [14] E. Casas and C. Pola , PLCBAS User’s Guide VERSION 1.1. Computación 1. Universidad de Cantabria, Santander, Spain (1989). 
  15. [15] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysys, Vol. II, edited by P.G. Ciarlet and J.-L. Lions. North-Holand (1991). Zbl0875.65086MR1115237
  16. [16] E. Di Benedetto, On the local behaviour of solutions of degenerate parabolic equatons with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986) 487-535. Zbl0635.35052MR881103
  17. [17] I. Ekeland and R. Temam, Convex analysis and variational problems. North-Holland, Amsterdam (1976). Zbl0322.90046MR463994
  18. [18] P. Gamallo, Contribución al estudio matemático de problemas de simulación y control activo del ruido, Ph. Thesis. Universidade de Santiago de Compostela, Spain (2002). 
  19. [19] J. Herskovits, A two stage feasible directions algorithm for nonlinear constrained optimization. Math. Programming 36 (1986) 19-38. Zbl0623.90070MR862066
  20. [20] J. Herskovits, A feasible directions interior point technique for nonlinear optimization. J. Optim. Theory Appl. 99 (1998) 121-146. Zbl0911.90303MR1653257
  21. [21] J.B. Hiriart–Urruty and C. Lemarechal, Convex analysis and Minimization Algorithms. Springer-Verlag, Berlin, Heildelberg (1993). Zbl0795.49002
  22. [22] B. Hu and J. Yong, Pontriagin maximum principle for semilinear and quasilinear parabolic equations with pointwise state constraints. SIAM J. Control Optim. 33 (1995) 1857-1880. Zbl0840.49012MR1358099
  23. [23] O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Uraltseva, Linear and quasilinear equations of parabolic type. Amer. Math. Soc., Providence, Transl. Math. Monogr. 23 (1968). Zbl0174.15403
  24. [24] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968). Zbl0179.41801MR244606
  25. [25] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
  26. [26] P.A. Nelson and S.J. Elliot, Active Control of Sound. Academic Press, London (1999). 
  27. [27] G.I. Marchuk, Mathematical models in environmental problems. North Holland, Amsterdam (1986). Zbl0597.90001MR842433
  28. [28] A. Martínez, C. Rodríguez and M.E. Vázquez–Méndez, Theoretical and numerical analysis of an optimal control problem related to waste-water treatment. SIAM J. Control Optim. 38 (2000) 1534-1553. Zbl0961.49002
  29. [29] C. Olin Ball and F.C.W. Olson, Sterilization in food technology. Mc Graw Hill, New York (1957). 
  30. [30] R.I. Pérez Martín, J.R. Banga and J.M. Gallardo, Simulation of thermal processes in tuna can manufacture. Instituto de Investigaciones Marinas (C.S.I.C.), Vigo, Spain (1989). 
  31. [31] E.R. Panier, A.L. Tits and J. Herskovits, A QP-Free, Globally Convergent, Locally Superlinearly Convergent Algorithm for Inequality Constrained Optimization. SIAM J. Control Optim. 26 (1988) 788-810. Zbl0651.90072MR948647
  32. [32] R. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973) 317-327. Zbl0255.65037MR337032
  33. [33] M.E. Vázquez–Méndez, Contribución a la resolución numérica de modelos para el estudio de la contaminación de aguas. Master thesis. Dept. Matemática Aplicada. Univ. Santiago de Compostela, Spain (1992). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.