Distance desert automata and the star height problem
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2005)
- Volume: 39, Issue: 3, page 455-509
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topKirsten, Daniel. "Distance desert automata and the star height problem." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 39.3 (2005): 455-509. <http://eudml.org/doc/244714>.
@article{Kirsten2005,
abstract = {We introduce the notion of nested distance desert automata as a joint generalization of distance automata and desert automata. We show that limitedness of nested distance desert automata is PSPACE-complete. As an application, we show that it is decidable in $2^\{2^\{\{\mathcal \{O\}\}(n)\}\}$ space whether the language accepted by an $n$-state non-deterministic automaton is of a star height less than a given integer $h$ (concerning rational expressions with union, concatenation and iteration), which is the first ever complexity bound for the star height problem.},
author = {Kirsten, Daniel},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {recognizable languages; star height; distance automata; star heights; desert automata; hierarchies; decidability; star height problem; free monoids},
language = {eng},
number = {3},
pages = {455-509},
publisher = {EDP-Sciences},
title = {Distance desert automata and the star height problem},
url = {http://eudml.org/doc/244714},
volume = {39},
year = {2005},
}
TY - JOUR
AU - Kirsten, Daniel
TI - Distance desert automata and the star height problem
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 3
SP - 455
EP - 509
AB - We introduce the notion of nested distance desert automata as a joint generalization of distance automata and desert automata. We show that limitedness of nested distance desert automata is PSPACE-complete. As an application, we show that it is decidable in $2^{2^{{\mathcal {O}}(n)}}$ space whether the language accepted by an $n$-state non-deterministic automaton is of a star height less than a given integer $h$ (concerning rational expressions with union, concatenation and iteration), which is the first ever complexity bound for the star height problem.
LA - eng
KW - recognizable languages; star height; distance automata; star heights; desert automata; hierarchies; decidability; star height problem; free monoids
UR - http://eudml.org/doc/244714
ER -
References
top- [1] S. Bala, Regular language matching and other decidable cases of the satisfiability problem for constraints between regular open terms, in STACS’04 Proceedings, edited by V. Diekert and M. Habib, Springer-Verlag, Berlin. Lect. Notes Comput. Sci. 2996 (2004) 596–607. Zbl1122.68462
- [2] J. Berstel, Transductions and Context-Free Languages. B.G. Teubner, Stuttgart (1979). Zbl0424.68040MR549481
- [3] R.S. Cohen, Star height of certain families of regular events. J. Comput. Syst. Sci. 4 (1970) 281–297. Zbl0245.94039
- [4] K. Culik II and J. Kari, Image compression using weighted finite automata. Computer Graphics 17 (1993) 305–313.
- [5] F. Dejean and M. Schützenberger, On a question of Eggan. Inform. Control 9 (1966) 23–25. Zbl0209.02903
- [6] L.C. Eggan, Transition graphs and the star height of regular events. Michigan Math. J. 10 (1963) 385–397. Zbl0173.01504
- [7] S. Eilenberg, Automata, Languages, and Machines, Vol. A. Academic Press, New York (1974). Zbl0317.94045MR530382
- [8] G. Grahne and A. Thomo, Approximate reasoning in semi-structured databases, in 8th International Workshop on Knowledge Representation meets Databases (KRDB2001), edited by M. Lenzerini et al., CEUR Workshop Proceedings 45 (2001). Zbl1110.68033
- [9] P.A. Grillet, Semigroups: An Introduction to the Structure Theory, Marcel Dekker, Inc., New York. Monographs and Textbooks in Pure and Applied Mathematics 193 (1995). Zbl0830.20079MR1350793
- [10] K. Hashiguchi, Limitedness theorem on finite automata with distance functions. J. Comput. Syst. Sci. 24 (1982) 233–244. Zbl0513.68051
- [11] K. Hashiguchi, Regular languages of star height one. Inform. Control 53 (1982) 199–210. Zbl0547.68072
- [12] K. Hashiguchi, Representation theorems of regular languages. J. Comput. Syst. Sci. 27 (1983) 101–115. Zbl0516.68063
- [13] K. Hashiguchi, Algorithms for determining relative star height and star height. Inform. Comput. 78 (1988) 124–169. Zbl0668.68081
- [14] K. Hashiguchi, Improved limitedness theorems on finite automata with distance functions. Theor. Comput. Sci. 72 (1990) 27–38. Zbl0693.68031
- [15] K. Hashiguchi, New upper bounds to the limitedness of distance automata, in ICALP’96 Proceedings, edited by F. Meyer auf der Heide and B. Monien, Springer-Verlag, Berlin. Lect. Notes Comput. Sci. 1099 (1996) 324–335. Zbl1046.68568
- [16] K. Hashiguchi, New upper bounds to the limitedness of distance automata. Theor. Comput. Sci. 233 (2000) 19–32. Zbl0952.68082
- [17] K. Hashiguchi, Erratum to “New upper bounds to the limitedness of distance automata”. Theor. Comput. Sci. 290 (2003) 2183–2184. Zbl0952.68082
- [18] K. Hashiguchi and N. Honda, Homomorphisms that preserve star height. Inform. Control 30 (1976) 247–266. Zbl0325.94039
- [19] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory Languages, and Computation. Addison-Wesley, Reading (1979). Zbl0426.68001MR645539
- [20] F. Katritzke, Refinements of Data Compression using Weighted Finite Automata. Ph.D. Thesis, Universität Siegen (2001).
- [21] D. Kirsten, A Burnside approach to the finite substitution problem. Theory Comput. Syst. (to appear). Zbl1102.68498MR2189557
- [22] D. Kirsten, Desert automata and the finite substitution problem, in STACS’04 Proceedings, edited by V. Diekert and M. Habib, Springer-Verlag, Berlin. Lect. Notes Comput. Sci. 2996 (2004). 305–316. Zbl1122.68467
- [23] D. Kirsten, Distance desert automata and the star height one problem, in FoSSaCS’04 Proceedings, edited by I. Walukiewicz, Springer-Verlag, Berlin. Lect. Notes Comput. Sci. 2987 (2004) 257–272. Zbl1126.68455
- [24] D. Kirsten and J. Marcinkowski, Two techniques in the area of the star problem in trace monoids. Theor. Comput. Sci. 309 (2003) 381–412. Zbl1106.68371
- [25] D. Krob, The equality problem for rational series with multiplicities in the tropical semiring is undecidable. Internat. J. Algebra Comput. 4 (1994) 405–425. Zbl0834.68058
- [26] G. Lallement, Semigroups and Combinatorial Applications. John Wiley & Sons, New York (1979). Zbl0421.20025MR530552
- [27] H. Leung, An Algebraic Method for Solving Decision Problems in Finite Automata Theory. Ph.D. Thesis, Pennsylvania State University, Department of Computer Science (1987).
- [28] H. Leung, On the topological structure of a finitely generated semigroup of matrices. Semigroup Forum 37 (1988) 273–287. Zbl0646.20056
- [29] H. Leung, Limitedness theorem on finite automata with distance functions: An algebraic proof. Theor. Comput. Sci. 81 (1991) 137–145. Zbl0729.68049
- [30] H. Leung, On some decision problems in finite automata, in Monoids and Semigroups with Applications, edited by J. Rhodes, World Scientific, Singapore (1991) 509–526. Zbl0796.20062
- [31] H. Leung, On finite automata with limited nondeterminism. Acta Inform. 35 (1998) 595–624. Zbl0923.68090
- [32] H. Leung, The topological approach to the limitedness problem on distance automata, in Idempotency, edited by J. Gunawardena, Cambridge University Press (1998) 88–111. Zbl0898.68049
- [33] H. Leung and V. Podolskiy, The limitedness problem on distance automata: Hashiguchi’s method revisited. Theor. Comput. Sci. 310 (2004) 147–158. Zbl1071.68045
- [34] S. Lombardy, Approche structurelle de quelques problèmes de la théorie des automates. Ph.D. Thesis, École nationale supérieure des télécommunications, Paris (2001).
- [35] S. Lombardy and J. Sakarovitch, On the star height of rational languages. A new proof for two old results, in Proc. of the 3rd Int. Conf. on Languages, Words and Combinatorics, Kyoto’00 edited by M. Ito, World Scientific (2000).
- [36] S. Lombardy and J. Sakarovitch, Star height of reversible languages and universal automata, in LATIN’02 Proceedings, Springer-Verlag, Berlin. Lect. Notes Comput. Sci. 2286 (2002) 76–89. Zbl1059.68065
- [37] Y. Métivier and G. Richomme. New results on the star problem in trace monoids. Inform. Comput. 119 (1995) 240–251. Zbl0832.68074
- [38] M. Mohri, Finite-state transducers in language and speech processing. Comput. Linguistics 23 (1997) 269–311.
- [39] R. Montalbano and A. Restivo, On the star height of rational languages. Internat. J. Algebra Comput. 4 (1994) 427–441. Zbl0823.68050
- [40] D. Perrin, Finite automata, in Handbook of Theoretical Computer Science, edited by J. van Leeuwen, Elsevier Science Publishers B (1990) 1–57. Zbl0900.68312
- [41] J.-É. Pin, Varieties of Formal Languages. North Oxford Academic Publishers Ltd (1986). Zbl0655.68095MR912694
- [42] J.-É. Pin, Rational and recognizable langages, in Lect. Appl. Math. Inform. edited by Ricciardi, Manchester University Press (1990) 62–106. Zbl0753.68072
- [43] J.-É. Pin, Finite semigroups and recognizable languages: An introduction, in NATO Advanced Study Institute, Semigroups, Formal Languages and Groups, edited by J. Fountain, Kluwer Academic Publishers (1995) 1–32. Zbl0872.20053
- [44] J.-É. Pin, Syntactic semigroups, in Handbook of Formal Languages, Vol. 1, Word, Language, Grammar, edited by G. Rozenberg and A. Salomaa, Springer-Verlag, Berlin (1997) 679–746.
- [45] J.-É. Pin, Tropical semirings, in Idempotency, edited by J. Gunawardena, Cambridge University Press (1998) 50–69. Zbl0909.16028
- [46] I. Simon, Limited subsets of a free monoid, in Proc. of the 19th IEEE Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Long Beach, CA (1978) 143–150.
- [47] I. Simon, Recognizable sets with multiplicities in the tropical semiring, in MFCS’88 Proceedings, edited by M.P. Chytil et al., Springer-Verlag, Berlin. Lect. Notes Comput. Sci. 324 (1988) 107–120. Zbl0656.68086
- [48] I. Simon, The nondeterministic complexity of a finite automaton, in Mots - mélanges offerts à M.P. Schützenberger, edited by M. Lothaire, Hermes (1990) 384–400.
- [49] I. Simon, On semigroups of matrices over the tropical semiring. RAIRO-Inf. Theor. Appl. 28 (1994) 277–294. Zbl0888.68086
- [50] A. Weber, Distance automata having large finite distance or finite ambiguity. Math. Syst. Theor. 26 (1993) 169–185. Zbl0771.68088
- [51] A. Weber, Finite valued distance automata. Theor. Comput. Sci. 134 (1994) 225–251. Zbl0938.68709
- [52] S. Yu, Regular Languages, in Handbook of Formal Languages, Vol. 1, Word, Language, Grammar, edited by G. Rozenberg and A. Salomaa, Springer-Verlag, Berlin (1997) 41–110.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.