A second-order multi-fluid model for evaporating sprays

Guillaume Dufour; Philippe Villedieu

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 5, page 931-963
  • ISSN: 0764-583X

Abstract

top
The aim of this paper is to present a method using both the ideas of sectional approach and moment methods in order to accurately simulate evaporation phenomena in gas-droplets flows. Using the underlying kinetic interpretation of the sectional method [Y. Tambour, Combust. Flame 60 (1985) 15–28] exposed in [F. Laurent and M. Massot, Combust. Theory Model. 5 (2001) 537–572], we propose an extension of this approach based on a more accurate representation of the droplet size number density in each section ensuring the exact conservation of two moments (as opposed to only one moment used in the classical approach). A corresponding second-order numerical scheme, with respect to space and droplet size variables, is also introduced and can be proved to be positive and to satisfy a maximum principle on the velocity and the mean droplet mass under a suitable CFL-like condition. Numerical simulations have been performed and the results confirm the accuracy of this new method even when a very coarse mesh for the droplet size variable (i.e.: a low number of sections) is used.

How to cite

top

Dufour, Guillaume, and Villedieu, Philippe. "A second-order multi-fluid model for evaporating sprays." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.5 (2005): 931-963. <http://eudml.org/doc/244718>.

@article{Dufour2005,
abstract = {The aim of this paper is to present a method using both the ideas of sectional approach and moment methods in order to accurately simulate evaporation phenomena in gas-droplets flows. Using the underlying kinetic interpretation of the sectional method [Y. Tambour, Combust. Flame 60 (1985) 15–28] exposed in [F. Laurent and M. Massot, Combust. Theory Model. 5 (2001) 537–572], we propose an extension of this approach based on a more accurate representation of the droplet size number density in each section ensuring the exact conservation of two moments (as opposed to only one moment used in the classical approach). A corresponding second-order numerical scheme, with respect to space and droplet size variables, is also introduced and can be proved to be positive and to satisfy a maximum principle on the velocity and the mean droplet mass under a suitable CFL-like condition. Numerical simulations have been performed and the results confirm the accuracy of this new method even when a very coarse mesh for the droplet size variable (i.e.: a low number of sections) is used.},
author = {Dufour, Guillaume, Villedieu, Philippe},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {moment method; sectional method; sprays; evaporation; multi-fluid; multi-fluid model; transport scheme; evaporation scheme},
language = {eng},
number = {5},
pages = {931-963},
publisher = {EDP-Sciences},
title = {A second-order multi-fluid model for evaporating sprays},
url = {http://eudml.org/doc/244718},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Dufour, Guillaume
AU - Villedieu, Philippe
TI - A second-order multi-fluid model for evaporating sprays
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 5
SP - 931
EP - 963
AB - The aim of this paper is to present a method using both the ideas of sectional approach and moment methods in order to accurately simulate evaporation phenomena in gas-droplets flows. Using the underlying kinetic interpretation of the sectional method [Y. Tambour, Combust. Flame 60 (1985) 15–28] exposed in [F. Laurent and M. Massot, Combust. Theory Model. 5 (2001) 537–572], we propose an extension of this approach based on a more accurate representation of the droplet size number density in each section ensuring the exact conservation of two moments (as opposed to only one moment used in the classical approach). A corresponding second-order numerical scheme, with respect to space and droplet size variables, is also introduced and can be proved to be positive and to satisfy a maximum principle on the velocity and the mean droplet mass under a suitable CFL-like condition. Numerical simulations have been performed and the results confirm the accuracy of this new method even when a very coarse mesh for the droplet size variable (i.e.: a low number of sections) is used.
LA - eng
KW - moment method; sectional method; sprays; evaporation; multi-fluid; multi-fluid model; transport scheme; evaporation scheme
UR - http://eudml.org/doc/244718
ER -

References

top
  1. [1] M.R. Archambault, C.F. Edwards and R.W. MacCormack, Computation of spray dynamics by moment transport equations I: Theory and development. Atomization Spray 13 (2003) 63–87. 
  2. [2] M.R. Archambault, C.F. Edwards and R.W. MacCormack, Computation of spray dynamics by moment transport equations II: Application to calculation of a quasi-one-dimensional spray. Atomization Spray 13 (2003) 89–115. 
  3. [3] J.C. Beck and A.P. Watkins, On the development of spray submodels based on droplet size moments. J. Comput. Phys. 182 (2002) 1–36. Zbl1058.76614
  4. [4] J.C. Beck and A.P. Watkins, The droplet number moments approach to spray modeling: The development of heat and mass transfer sub-models. Int. J. Heat Fluid Flow 24 (2003) 242–259. 
  5. [5] A.V. Bobylev and T. Ohwada, The error of the splitting scheme for solving evolutionary equations. Appl. Math. Lett. 14 (2001) 45–48. Zbl0976.65081
  6. [6] F. Bouchut, On zero pressure gas dynamics. Advances in Kinetic Theory and Computing, Selected Papers, Ser. Adv. Math. Appl. Sci. 22 (1994) 171–190. Zbl0863.76068
  7. [7] F. Bouchut, S. Jin and X. Li, Numerical approximations of pressureless and isothermal gas dynamics. SIAM J. Numer. Anal. 41-1 (2003) 135–158. Zbl1060.76080
  8. [8] R. Clift, J.R. Grace and M.E. Weber, Bubbles, drops and particles. Academic Press (1978). 
  9. [9] C.T. Crowe, Review - Numerical methods for dilute gas-particle flows. Trans. ASME J. Fluids Eng. 104 (1982) 297–303. 
  10. [10] C. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 107 (1989) 127–155. Zbl0714.35046
  11. [11] K. Domelevo, Analyse mathématique et numérique d’une modélisation cinétique d’un brouillard de gouttelettes dans un écoulement gazeux turbulent. Ph.D. Thesis, École Polytechnique, France (1996). 
  12. [12] K. Domelevo, The kinetic sectional approach for noncolliding evaporating sprays. Atomization Spray 11 (2001) 291–303. 
  13. [13] D.A. Drew, Mathematical modeling of two-phase flows. Annu. Rev. Fluid. Mech. 15 (1983) 261–291. Zbl0569.76104
  14. [14] G. Dufour, Un modèle multi-fluide Eulerien pour les écoulements diphasiques à inclusions dispersées. Ph.D. Thesis, Université Toulouse III, France (2005). 
  15. [15] J.K. Dukowicz, A particle-fluid numerical model for liquid sprays. J. Comput. Phys. 35 (1980) 229–253. Zbl0437.76051
  16. [16] J. Dupays, Contribution à l’étude du rôle de la phase condensée dans la stabilité d’un propulseur à propergol solide pour lanceur spatial. Ph.D. Thesis, Institut National Polytechnique de Toulouse, France (1996). 
  17. [17] H. Grad, On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2 (1949) 331–407. Zbl0037.13104
  18. [18] J.B. Greenberg, I. Silverman and Y. Tambour, On the origin of spray sectional conservation equations. Combustion Flame 93 (1993) 90–96. 
  19. [19] A. Harten, B. Engquist, S. Osher and S. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 126 (1987) 231–303. Zbl0652.65067
  20. [20] J.J. Hylkema, Modélisation cinétique et simulation numérique d’un brouillard dense de gouttelettes. Applications aux propulseurs à poudre. Ph.D. Thesis, ENSAE, France (1999). 
  21. [21] M. Ishii, Thermo-fluid dynamics of two-phase flows. Eyrolles, Paris (1975). Zbl0325.76135
  22. [22] F. Laurent, Analyse numérique d’une méthode multi-fluide Eulérienne pour la description de sprays qui s’évaporent. C. R. Acad. Sci. Paris Ser. I 334 (2002) 417–422. Zbl1090.76055
  23. [23] F. Laurent, Numerical analysis of Eulerian multi-fluid models in the context of kinetic formulations for dilute evaporating sprays. To be submitted. Zbl1160.76380
  24. [24] F. Laurent and M. Massot, Multi-fluid modeling of laminar poly-disperse spray flames: origin, assumptions and comparison of sectional and sampling methods. Combust. Theor. Model. 5 (2001) 537–572. Zbl1160.76419
  25. [25] F. Laurent, M. Massot and P. Villedieu, Eulerian multi-fluid modeling for the numerical simulation of coalescence in polydisperse dense liquid sprays. J. Comput. Phys. 194 (2004) 505–543. Zbl1100.76069
  26. [26] F. Laurent, V. Santoro, M. Noskov, M.D. Smooke, A. Gomez and M. Massot, Accurate treatment of size distribution effects in polydisperse spray diffusion flames: multi-fluid modelling, computations and experiments. Combust. Theor. Model. 8 (2004) 385–412. 
  27. [27] C.D. Levermore, Moment closure hierarchies for kinetics theories. J. Statist. Phys. 83 (1996) 1021–1065. Zbl1081.82619
  28. [28] D. Levy, G. Puppo and G. Russo, On the behavior of the total variation in CWENO methods for conservation laws. Appl. Numer. Math. 33 (2000) 407–414. Zbl0964.65095
  29. [29] R. Maxey and J. Riley, Equation of motion of a small rigid sphere in a non-unifom flow. Phys. Fluids 26 (1983) 883–889. Zbl0538.76031
  30. [30] P.J. O’Rourke, Collective drop effects on vaporizing liquid sprays. Ph.D. Thesis, Los Alamos national Laboratory, New Mexico 87545 (1981). 
  31. [31] F. Poupaud and M. Rascle, Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Comm. P.D.E 22 (1997) 337–358. Zbl0882.35026
  32. [32] D. Ramkrishna and A.G. Fredrickson, Population balances: Theory and applications to particulate systems in engineering. Academic Press (2000). 
  33. [33] M. Rüger, S. Hohmann, M. Sommerfeld and G. Kohnen, Euler-Lagrange calculations of turbulent sprays: the effect of droplet collisions and coalescence. Atomization Spray 10 (2000). 
  34. [34] O. Simonin, Modélisation numérique des écoulements turbulents diphasiques à inclusions dispersées. École de Printemps de Mécanique des Fluides numériques, Aussois (1991). 
  35. [35] O. Simonin, Continuum modeling of dispersed two-phase flows. Combustion and turbulence in two-phase flows. Lecture Series 1996-02, Von Karman Inst. for fluid dyn. (1996). 
  36. [36] G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 507–517. Zbl0184.38503
  37. [37] Y. Tambour, A Lagrangian sectional approach for simulating droplet size distribution of vaporizing fuel sprays in a turbulent jet. Combustion Flame 60 (1985) 15–28. 
  38. [38] B. Van Leer, A second-order sequel to Godunov’s method. J. Comput. Phys. 32 (1979) 101–136. 
  39. [39] F.A. Williams, Spray combustion and atomization. Phys. Fluids 1 (1958) 541–555. Zbl0086.41102
  40. [40] F.A. Williams, Combustion Theory. Addison-Wesley Publishing (1985). 
  41. [41] D.L. Wright, R. McGraw and D.E. Rosner, Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations. J. Colloid Interf. Sci. 236 (2001) 242–251. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.