Weak linking theorems and Schrödinger equations with critical Sobolev exponent

Martin Schechter; Wenming Zou

ESAIM: Control, Optimisation and Calculus of Variations (2003)

  • Volume: 9, page 601-619
  • ISSN: 1292-8119

Abstract

top
In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation - Δ u + V ( x ) u = K ( x ) | u | 2 * - 2 u + g ( x , u ) , u W 1 , 2 ( 𝐑 N ) , where N 4 ; V , K , g are periodic in x j for 1 j N and 0 is in a gap of the spectrum of - Δ + V ; K > 0 . If 0 < g ( x , u ) u c | u | 2 * for an appropriate constant c , we show that this equation has a nontrivial solution.

How to cite

top

Schechter, Martin, and Zou, Wenming. "Weak linking theorems and Schrödinger equations with critical Sobolev exponent." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 601-619. <http://eudml.org/doc/244774>.

@article{Schechter2003,
abstract = {In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation $-\Delta u+V(x)u=K(x)|u|^\{2^\ast -2\}u+g(x, u), u\in W^\{1,2\}(\{\bf R\}^N)$, where $N\ge 4; V, K, g $ are periodic in $ x_j $ for $1\le j\le N$ and 0 is in a gap of the spectrum of $-\Delta +V$; $K&gt;0$. If $0&lt;g(x, u)u\le c|u|^\{2^\ast \}$ for an appropriate constant $c$, we show that this equation has a nontrivial solution.},
author = {Schechter, Martin, Zou, Wenming},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {linking; Schrödinger equations; critical Sobolev exponent},
language = {eng},
pages = {601-619},
publisher = {EDP-Sciences},
title = {Weak linking theorems and Schrödinger equations with critical Sobolev exponent},
url = {http://eudml.org/doc/244774},
volume = {9},
year = {2003},
}

TY - JOUR
AU - Schechter, Martin
AU - Zou, Wenming
TI - Weak linking theorems and Schrödinger equations with critical Sobolev exponent
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 601
EP - 619
AB - In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation $-\Delta u+V(x)u=K(x)|u|^{2^\ast -2}u+g(x, u), u\in W^{1,2}({\bf R}^N)$, where $N\ge 4; V, K, g $ are periodic in $ x_j $ for $1\le j\le N$ and 0 is in a gap of the spectrum of $-\Delta +V$; $K&gt;0$. If $0&lt;g(x, u)u\le c|u|^{2^\ast }$ for an appropriate constant $c$, we show that this equation has a nontrivial solution.
LA - eng
KW - linking; Schrödinger equations; critical Sobolev exponent
UR - http://eudml.org/doc/244774
ER -

References

top
  1. [1] S. Alama and Y.Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part. J. Differential Equations 96 (1992) 89-115. Zbl0766.35009MR1153310
  2. [2] S. Alama and Y.Y. Li, On “multibump” bound states for certain semilinear elliptic equations. Indiana J. Math. 41 (1992) 983-1026. Zbl0796.35043
  3. [3] T. Bartsch and Y. Ding, On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313 (1999) 15-37. Zbl0927.35103MR1666801
  4. [4] V. Benci and G. Cerami, Existence of positive solutions of the equation - Δ u + a ( x ) u = u ( N + 2 ) / ( N - 2 ) in 𝐑 N . J. Funct. Anal. 88 (1990) 90-117. Zbl0705.35042MR1033915
  5. [5] B. Buffoni, L. Jeanjean and C.A. Stuart, Existence of nontrivial solutions to a strongly indefinite semilinear equation. Proc. Amer. Math. Soc. 119 (1993) 179-186. Zbl0789.35052MR1145940
  6. [6] J. Chabrowski and A. Szulkin, On a semilinear Schrödinger equation with critical Sobolev exponent. Preprint of Stockholm University. Zbl0984.35150
  7. [7] J. Chabrowski and J. Yang, On Schrödinger equation with periodic potential and critical Sobolev exponent. Topol. Meth. Nonl. Anal. 12 (1998) 245-261. Zbl0931.35052MR1701262
  8. [8] V. Coti–Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on 𝐑 N . Comm. Pure Appl. Math. 45 (1992) 1217-1269. Zbl0785.35029
  9. [9] N. Dunford and J.T. Schwartz, Linear Operators. Part I. Interscience (1967). Zbl0084.10402
  10. [10] L. Jeanjean, Solutions in spectral gaps for a nonlinear equation of Schrödinger type. J. Differential Equations 112 (1994) 53-80. Zbl0804.35033MR1287552
  11. [11] L. Jeanjean, On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem set on 𝐑 N . Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787-809. Zbl0935.35044
  12. [12] W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv. Differential Equations 3 (1998) 441-472. Zbl0947.35061MR1751952
  13. [13] P. Kuchment, Floquet Theory for Partial Differential Equations. Birkhäuser, Basel (1993). Zbl0789.35002MR1232660
  14. [14] Y.Y. Li, On - Δ u = K ( x ) u 5 in 𝐑 3 . Comm. Pure Appl. Math. 46 (1993) 303-340. 
  15. [15] Y.Y. Li, Prescribing scalar curvature on S n and related problems. Part I. J. Differential Equations 120 (1995) 319-410. Zbl0827.53039MR1347349
  16. [16] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223-283. Zbl0704.49004MR778974
  17. [17] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV. Academic Press (1978). Zbl0401.47001MR493422
  18. [18] M. Schechter, Critical point theory with weak-to-weak linking. Comm. Pure Appl. Math. 51 (1998) 1247-1254. Zbl0942.58024MR1639208
  19. [19] M. Schechter, Ratationally invariant periodic solutions of semilinear wave equations. Preprint of the Department of Mathematics, University of California (1998). Zbl0973.35024MR1700282
  20. [20] M. Schechter, Linking Methods in Critical Point Theory. Birkhäuser, Boston (1999). Zbl0915.35001MR1729208
  21. [21] M. Struwe, The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 160 (1988) 19-64. Zbl0646.53005MR926524
  22. [22] C.A. Stuart, Bifurcation into Spectral Gaps. Bull. Belg. Math. Soc. Suppl. (1995). Zbl0864.47037MR1361485
  23. [23] A. Szulkin and W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal. 187 (2001) 25-41. Zbl0984.37072MR1867339
  24. [24] C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation. Comm. Partial Differential Equations 21 (1996) 1431-1449. Zbl0864.35036MR1410836
  25. [25] M. Willem and W. Zou, On a semilinear Dirichlet problem and a nonlinear Schrödinger equation with periodic potential. Indiana Univ. Math. J. 52 (2003) 109-132. Zbl1030.35068MR1970023
  26. [26] M. Willem, Minimax Theorems. Birkhäuser, Boston (1996). Zbl0856.49001MR1400007
  27. [27] W. Zou, Solitary Waves of the Generalized Kadomtsev–Petviashvili Equations. Appl. Math. Lett. 15 (2002) 35-39. Zbl1016.35062
  28. [28] W. Zou, Variant Fountain Theorems and their Applications. Manuscripta Math. 104 (2001) 343-358. Zbl0976.35026MR1828880
  29. [29] M. Schechter, Some recent results in critical point theory. Pan Amer. Math. J. 12 (2002) 1-19. Zbl1152.58303MR1895766
  30. [30] M. Schechter and W. Zou, Homoclinic Orbits for Schrödinger Systems. Michigan Math. J. 51 (2003) 59-71. Zbl1195.35281MR1960921
  31. [31] M. Schechter and W. Zou, Superlinear Problem. Pacific J. Math. (accepted). Zbl1134.35346
  32. [32] W. Zou and S. Li, New Linking Theorem and Elliptic Systems with Nonlinear Boundary Condition. Nonl. Anal. TMA 52 (2003) 1797-1820. Zbl1022.35016MR1956177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.