Weak linking theorems and Schrödinger equations with critical Sobolev exponent
ESAIM: Control, Optimisation and Calculus of Variations (2003)
- Volume: 9, page 601-619
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topSchechter, Martin, and Zou, Wenming. "Weak linking theorems and Schrödinger equations with critical Sobolev exponent." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 601-619. <http://eudml.org/doc/244774>.
@article{Schechter2003,
abstract = {In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation $-\Delta u+V(x)u=K(x)|u|^\{2^\ast -2\}u+g(x, u), u\in W^\{1,2\}(\{\bf R\}^N)$, where $N\ge 4; V, K, g $ are periodic in $ x_j $ for $1\le j\le N$ and 0 is in a gap of the spectrum of $-\Delta +V$; $K>0$. If $0<g(x, u)u\le c|u|^\{2^\ast \}$ for an appropriate constant $c$, we show that this equation has a nontrivial solution.},
author = {Schechter, Martin, Zou, Wenming},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {linking; Schrödinger equations; critical Sobolev exponent},
language = {eng},
pages = {601-619},
publisher = {EDP-Sciences},
title = {Weak linking theorems and Schrödinger equations with critical Sobolev exponent},
url = {http://eudml.org/doc/244774},
volume = {9},
year = {2003},
}
TY - JOUR
AU - Schechter, Martin
AU - Zou, Wenming
TI - Weak linking theorems and Schrödinger equations with critical Sobolev exponent
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 601
EP - 619
AB - In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation $-\Delta u+V(x)u=K(x)|u|^{2^\ast -2}u+g(x, u), u\in W^{1,2}({\bf R}^N)$, where $N\ge 4; V, K, g $ are periodic in $ x_j $ for $1\le j\le N$ and 0 is in a gap of the spectrum of $-\Delta +V$; $K>0$. If $0<g(x, u)u\le c|u|^{2^\ast }$ for an appropriate constant $c$, we show that this equation has a nontrivial solution.
LA - eng
KW - linking; Schrödinger equations; critical Sobolev exponent
UR - http://eudml.org/doc/244774
ER -
References
top- [1] S. Alama and Y.Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part. J. Differential Equations 96 (1992) 89-115. Zbl0766.35009MR1153310
- [2] S. Alama and Y.Y. Li, On “multibump” bound states for certain semilinear elliptic equations. Indiana J. Math. 41 (1992) 983-1026. Zbl0796.35043
- [3] T. Bartsch and Y. Ding, On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313 (1999) 15-37. Zbl0927.35103MR1666801
- [4] V. Benci and G. Cerami, Existence of positive solutions of the equation in . J. Funct. Anal. 88 (1990) 90-117. Zbl0705.35042MR1033915
- [5] B. Buffoni, L. Jeanjean and C.A. Stuart, Existence of nontrivial solutions to a strongly indefinite semilinear equation. Proc. Amer. Math. Soc. 119 (1993) 179-186. Zbl0789.35052MR1145940
- [6] J. Chabrowski and A. Szulkin, On a semilinear Schrödinger equation with critical Sobolev exponent. Preprint of Stockholm University. Zbl0984.35150
- [7] J. Chabrowski and J. Yang, On Schrödinger equation with periodic potential and critical Sobolev exponent. Topol. Meth. Nonl. Anal. 12 (1998) 245-261. Zbl0931.35052MR1701262
- [8] V. Coti–Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on . Comm. Pure Appl. Math. 45 (1992) 1217-1269. Zbl0785.35029
- [9] N. Dunford and J.T. Schwartz, Linear Operators. Part I. Interscience (1967). Zbl0084.10402
- [10] L. Jeanjean, Solutions in spectral gaps for a nonlinear equation of Schrödinger type. J. Differential Equations 112 (1994) 53-80. Zbl0804.35033MR1287552
- [11] L. Jeanjean, On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem set on . Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787-809. Zbl0935.35044
- [12] W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv. Differential Equations 3 (1998) 441-472. Zbl0947.35061MR1751952
- [13] P. Kuchment, Floquet Theory for Partial Differential Equations. Birkhäuser, Basel (1993). Zbl0789.35002MR1232660
- [14] Y.Y. Li, On in . Comm. Pure Appl. Math. 46 (1993) 303-340.
- [15] Y.Y. Li, Prescribing scalar curvature on and related problems. Part I. J. Differential Equations 120 (1995) 319-410. Zbl0827.53039MR1347349
- [16] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223-283. Zbl0704.49004MR778974
- [17] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV. Academic Press (1978). Zbl0401.47001MR493422
- [18] M. Schechter, Critical point theory with weak-to-weak linking. Comm. Pure Appl. Math. 51 (1998) 1247-1254. Zbl0942.58024MR1639208
- [19] M. Schechter, Ratationally invariant periodic solutions of semilinear wave equations. Preprint of the Department of Mathematics, University of California (1998). Zbl0973.35024MR1700282
- [20] M. Schechter, Linking Methods in Critical Point Theory. Birkhäuser, Boston (1999). Zbl0915.35001MR1729208
- [21] M. Struwe, The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 160 (1988) 19-64. Zbl0646.53005MR926524
- [22] C.A. Stuart, Bifurcation into Spectral Gaps. Bull. Belg. Math. Soc. Suppl. (1995). Zbl0864.47037MR1361485
- [23] A. Szulkin and W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal. 187 (2001) 25-41. Zbl0984.37072MR1867339
- [24] C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation. Comm. Partial Differential Equations 21 (1996) 1431-1449. Zbl0864.35036MR1410836
- [25] M. Willem and W. Zou, On a semilinear Dirichlet problem and a nonlinear Schrödinger equation with periodic potential. Indiana Univ. Math. J. 52 (2003) 109-132. Zbl1030.35068MR1970023
- [26] M. Willem, Minimax Theorems. Birkhäuser, Boston (1996). Zbl0856.49001MR1400007
- [27] W. Zou, Solitary Waves of the Generalized Kadomtsev–Petviashvili Equations. Appl. Math. Lett. 15 (2002) 35-39. Zbl1016.35062
- [28] W. Zou, Variant Fountain Theorems and their Applications. Manuscripta Math. 104 (2001) 343-358. Zbl0976.35026MR1828880
- [29] M. Schechter, Some recent results in critical point theory. Pan Amer. Math. J. 12 (2002) 1-19. Zbl1152.58303MR1895766
- [30] M. Schechter and W. Zou, Homoclinic Orbits for Schrödinger Systems. Michigan Math. J. 51 (2003) 59-71. Zbl1195.35281MR1960921
- [31] M. Schechter and W. Zou, Superlinear Problem. Pacific J. Math. (accepted). Zbl1134.35346
- [32] W. Zou and S. Li, New Linking Theorem and Elliptic Systems with Nonlinear Boundary Condition. Nonl. Anal. TMA 52 (2003) 1797-1820. Zbl1022.35016MR1956177
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.