Enveloppe convexe des hyperplans d’un espace affine fini

Olivier Anglada; Jean François Maurras

RAIRO - Operations Research - Recherche Opérationnelle (2003)

  • Volume: 37, Issue: 4, page 213-219
  • ISSN: 0399-0559

Abstract

top
In this paper we characterize by the facets the convex hull of the characteristic vectors of the hyperplanes of a finite projective space and of a finite affine space.

How to cite

top

Anglada, Olivier, and Maurras, Jean François. "Enveloppe convexe des hyperplans d’un espace affine fini." RAIRO - Operations Research - Recherche Opérationnelle 37.4 (2003): 213-219. <http://eudml.org/doc/244810>.

@article{Anglada2003,
abstract = {Dans cet article nous caractérisons, par les facettes, l’enveloppe convexe des vecteurs caractéristiques des hyperplans d’un espace projectif fini et d’un espace affine fini.},
author = {Anglada, Olivier, Maurras, Jean François},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {fre},
number = {4},
pages = {213-219},
publisher = {EDP-Sciences},
title = {Enveloppe convexe des hyperplans d’un espace affine fini},
url = {http://eudml.org/doc/244810},
volume = {37},
year = {2003},
}

TY - JOUR
AU - Anglada, Olivier
AU - Maurras, Jean François
TI - Enveloppe convexe des hyperplans d’un espace affine fini
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 4
SP - 213
EP - 219
AB - Dans cet article nous caractérisons, par les facettes, l’enveloppe convexe des vecteurs caractéristiques des hyperplans d’un espace projectif fini et d’un espace affine fini.
LA - fre
UR - http://eudml.org/doc/244810
ER -

References

top
  1. [1] T. Fleiner, V. Kaibel and G. Rote, Upper bounds on the maximal number of facets of 0 / 1 -polytopes. Eur. J. Combin. 21 (2000) 121-130. Zbl0951.52007MR1737332
  2. [2] J.F. Maurras, Some results on the convex hull of the hamiltonian cycles of symetric complete graphs, in Comb. Programming Method Application, Proc. N.A.T.O. advanced institute, edited by B. Roy (1975) 179-180. Zbl0316.90078MR389664
  3. [3] J.F. Maurras, An exemple of dual polytopes in the unit hypercube. Ann. Discrete Math. 1 (1977) 391-392. Zbl0361.52004MR500543
  4. [4] J.F. Maurras, Convex hull of the edges of a graph and near bipartite graphs. Discrete Math. 46 (1983) 257-265. Zbl0524.05060MR716446
  5. [5] J.F. Maurras, k-arcs et designs dans les plans projectifs finis. Document interne du GRTC, Marseille (1986). 
  6. [6] J.F. Maurras, The Line Polytope of a finite Affine Plane. Discrete Math. 115 (1993) 283-286. Zbl0774.51001MR1217638
  7. [7] B. Segre, Lectures on Modern Geometry. Edizioni Cremonese, Roma (1961). Zbl0095.14802MR131192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.