Optimal control of delay systems with differential and algebraic dynamic constraints
Boris S. Mordukhovich; Lianwen Wang
ESAIM: Control, Optimisation and Calculus of Variations (2005)
- Volume: 11, Issue: 2, page 285-309
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] K.E. Brennan, S.L. Campbell and L.R. Pretzold, Numerical Solution of Initial Value Problems in Differential-Algebraic Equations. North-Holland, New York (1989). Zbl0699.65057MR1101809
- [2] E.N. Devdariani and Yu.S. Ledyaev, Maximum principle for implicit control systems. Appl. Math. Optim. 40 (1999) 79–103. Zbl0929.49006
- [3] A.L. Dontchev and E.M. Farhi, Error estimates for discretized differential inclusions. Computing 41 (1989) 349–358. Zbl0667.65067
- [4] M. Kisielewicz, Differential Inclusions and Optimal Control. Kluwer, Dordrecht (1991). Zbl0731.49001MR1135796
- [5] B.S. Mordukhovich, Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40 (1976) 960–969. Zbl0362.49017
- [6] B.S. Mordukhovich, Approximation Methods in Problems of Optimization and Control. Nauka, Moscow (1988). Zbl0643.49001MR945143
- [7] B.S. Mordukhovich, Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Amer. Math. Soc. 340 (1993) 1–35. Zbl0791.49018
- [8] B.S. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions. SIAM J. Control Optim. 33 (1995) 882–915. Zbl0844.49017
- [9] B.S. Mordukhovich, J.S. Treiman and Q.J. Zhu, An extended extremal principle with applications to multiobjective optimization. SIAM J. Optim. 14 (2003) 359–379. Zbl1041.49019
- [10] B.S. Mordukhovich and R. Trubnik, Stability of discrete approximation and necessary optimality conditions for delay-differential inclusions. Ann. Oper. Res. 101 (2001) 149–170. Zbl1006.49016
- [11] B.S. Mordukhovich and L. Wang, Optimal control of constrained delay-differential inclusions with multivalued initial condition. Control Cybernet. 32 (2003) 585–609. Zbl1127.49303
- [12] B.S. Mordukhovich and L. Wang, Optimal control of neutral functional-differential inclusions. SIAM J. Control Optim. 43 (2004) 116-136. Zbl1070.49016MR2082695
- [13] B.S. Mordukhovich and L. Wang, Optimal control of differential-algebraic inclusions, in Optimal Control, Stabilization, and Nonsmooth Analysis, M. de Queiroz et al., Eds., Lectures Notes in Control and Information Sciences, Springer-Verlag, Heidelberg 301 (2004) 73–83. Zbl1160.49024
- [14] M.D.R. de Pinho and R.B. Vinter, Necessary conditions for optimal control problems involving nonlinear differential algebraic equations. J. Math. Anal. Appl. 212 (1997) 493–516. Zbl0891.49013
- [15] C. Pantelides, D. Gritsis, K.P. Morison and R.W.H. Sargent, The mathematical modelling of transient systems using differential-algebraic equations. Comput. Chem. Engrg. 12 (1988) 449–454.
- [16] R.T. Rockafellar, Equivalent subgradient versions of Hamiltonian and Euler–Lagrange conditions in variational analysis. SIAM J. Control Optim. 34 (1996) 1300–1314. Zbl0878.49012
- [17] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer-Verlag, Berlin (1998). Zbl0888.49001MR1491362
- [18] G.V. Smirnov, Introduction to the Theory of Differential Inclusions. American Mathematical Society, Providence, RI (2002). Zbl0992.34001MR1867542
- [19] R.B. Vinter, Optimal Control. Birkhäuser, Boston (2000). Zbl0952.49001MR1756410
- [20] J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York (1972). Zbl0253.49001MR372708