Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions

Silvia Cingolani; Louis Jeanjean; Simone Secchi

ESAIM: Control, Optimisation and Calculus of Variations (2009)

  • Volume: 15, Issue: 3, page 653-675
  • ISSN: 1292-8119

Abstract

top
In this work we consider the magnetic NLS equation ( i - A ( x ) ) 2 u + V ( x ) u - f ( | u | 2 ) u = 0 in N ( 0 . 1 ) where N 3 , A : N N is a magnetic potential, possibly unbounded, V : N is a multi-well electric potential, which can vanish somewhere, f is a subcritical nonlinear term. We prove the existence of a semiclassical multi-peak solution u : N to (0.1), under conditions on the nonlinearity which are nearly optimal.

How to cite

top

Cingolani, Silvia, Jeanjean, Louis, and Secchi, Simone. "Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions." ESAIM: Control, Optimisation and Calculus of Variations 15.3 (2009): 653-675. <http://eudml.org/doc/244886>.

@article{Cingolani2009,
abstract = {In this work we consider the magnetic NLS equation\[\hspace*\{54.06023pt\}( \frac\{\hbar \}\{i\} \nabla -A(x))^2 u + V(x)u - f(|u|^2)u \, = 0 \, \qquad \mbox\{ in \} \mathbb \{R\}^N\qquad \qquad (0.1)\]where $N \ge 3$, $A \colon \mathbb \{R\}^N \rightarrow \mathbb \{R\}^N$ is a magnetic potential, possibly unbounded, $V \colon \mathbb \{R\}^N \rightarrow \mathbb \{R\}$ is a multi-well electric potential, which can vanish somewhere, $f$ is a subcritical nonlinear term. We prove the existence of a semiclassical multi-peak solution $u\colon \mathbb \{R\}^N \rightarrow \mathbb \{C\}$ to (0.1), under conditions on the nonlinearity which are nearly optimal.},
author = {Cingolani, Silvia, Jeanjean, Louis, Secchi, Simone},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {nonlinear Schrödinger equations; magnetic fields; multi-peaks},
language = {eng},
number = {3},
pages = {653-675},
publisher = {EDP-Sciences},
title = {Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions},
url = {http://eudml.org/doc/244886},
volume = {15},
year = {2009},
}

TY - JOUR
AU - Cingolani, Silvia
AU - Jeanjean, Louis
AU - Secchi, Simone
TI - Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2009
PB - EDP-Sciences
VL - 15
IS - 3
SP - 653
EP - 675
AB - In this work we consider the magnetic NLS equation\[\hspace*{54.06023pt}( \frac{\hbar }{i} \nabla -A(x))^2 u + V(x)u - f(|u|^2)u \, = 0 \, \qquad \mbox{ in } \mathbb {R}^N\qquad \qquad (0.1)\]where $N \ge 3$, $A \colon \mathbb {R}^N \rightarrow \mathbb {R}^N$ is a magnetic potential, possibly unbounded, $V \colon \mathbb {R}^N \rightarrow \mathbb {R}$ is a multi-well electric potential, which can vanish somewhere, $f$ is a subcritical nonlinear term. We prove the existence of a semiclassical multi-peak solution $u\colon \mathbb {R}^N \rightarrow \mathbb {C}$ to (0.1), under conditions on the nonlinearity which are nearly optimal.
LA - eng
KW - nonlinear Schrödinger equations; magnetic fields; multi-peaks
UR - http://eudml.org/doc/244886
ER -

References

top
  1. [1] A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140 (1997) 285–300. Zbl0896.35042MR1486895
  2. [2] A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159 (2001) 253–271. Zbl1040.35107MR1857674
  3. [3] G. Arioli and A. Szulkin, A semilinear Schrödinger equations in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170 (2003) 277–295. Zbl1051.35082MR2022133
  4. [4] S. Barile, S. Cingolani and S. Secchi, Single-peaks for a magnetic Schrödinger equation with critical growth. Adv. Diff. Equations 11 (2006) 1135–1166. Zbl1146.35411MR2279741
  5. [5] T. Bartsch, E.N. Dancer and S. Peng, On multi-bump semi-classical bound states of nonlinear Schrödinger equations with electromagnetic fields. Adv. Diff. Equations 11 (2006) 781–812. Zbl1146.35081MR2236582
  6. [6] H. Berestycki and P.L. Lions, Nonlinear scalar field equation I. Arch. Ration. Mech. Anal. 82 (1983) 313–346. Zbl0533.35029MR695535
  7. [7] J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185 (2007) 185–200. Zbl1132.35078MR2317788
  8. [8] J. Byeon and L. Jeanjean, Erratum: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. DOI 10.1007/s00205-006-0019-3. Zbl1173.35636MR2317788
  9. [9] J. Byeon and L. Jeanjean, Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete Cont. Dyn. Systems 19 (2007) 255–269. Zbl1155.35089MR2335747
  10. [10] J. Byeon and Z.-Q. Wang, Standing waves with critical frequency for nonlinear Schrödinger equations. Arch. Rat. Mech. Anal. 165 (2002) 295–316. Zbl1022.35064MR1939214
  11. [11] J. Byeon and Z.-Q. Wang, Standing waves with critical frequency for nonlinear Schrödinger equations II. Calc. Var. Partial Differ. Equ. 18 (2003) 207–219. Zbl1073.35199MR2010966
  12. [12] J. Byeon, L. Jeanjean and K. Tanaka, Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases. Comm. Partial Diff. Eq. 33 (2008) 1113–1136. Zbl1155.35344MR2424391
  13. [13] D. Cao and E.-S. Noussair, Multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations. J. Diff. Eq. 203 (2004) 292–312. Zbl1063.35142MR2073688
  14. [14] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes. AMS (2003). Zbl1055.35003MR2002047
  15. [15] J. Chabrowski and A. Szulkin, On the Schrödinger equation involving a critical Sobolev exponent and magnetic field. Topol. Methods Nonlinear Anal. 25 (2005) 3–21. Zbl1176.35022MR2133390
  16. [16] S. Cingolani, Semiclassical stationary states of nonlinear Schrödinger equations with an external magnetic field. J. Diff. Eq. 188 (2003) 52–79. Zbl1062.81056MR1954508
  17. [17] S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Diff. Eq. 160 (2000) 118–138. Zbl0952.35043MR1734531
  18. [18] S. Cingolani and M. Nolasco, Multi-peaks periodic semiclassical states for a class of nonlinear Schrödinger equations. Proc. Royal Soc. Edinburgh 128 (1998) 1249–1260. Zbl0922.35158MR1664105
  19. [19] S. Cingolani and S. Secchi, Semiclassical limit for nonlinear Schrödinger equations with electromagnetic fields. J. Math. Anal. Appl. 275 (2002) 108–130. Zbl1014.35087MR1941775
  20. [20] S. Cingolani and S. Secchi, Semiclassical states for NLS equations with magnetic potentials having polynomial growths. J. Math. Phys. 46 (2005) 1–19. Zbl1110.81081MR2143013
  21. [21] M. Clapp, R. Iturriaga and A. Szulkin, Periodic solutions to a nonlinear Schrödinger equations with periodic magnetic field. Preprint. 
  22. [22] V. Coti-Zelati and P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc. 4 (1991) 693–727. Zbl0744.34045MR1119200
  23. [23] V. Coti-Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on N . Comm. Pure Appl. Math. 45 (1992) 1217–1269. Zbl0785.35029MR1181725
  24. [24] M. Del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4 (1996) 121–137. Zbl0844.35032MR1379196
  25. [25] M. Del Pino and P. Felmer, Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149 (1997) 245–265. Zbl0887.35058MR1471107
  26. [26] M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 127–149. Zbl0901.35023MR1614646
  27. [27] M.J. Esteban and P.L. Lions, Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, in PDE and Calculus of Variations, in honor of E. De Giorgi, Birkhäuser (1990). Zbl0702.35067MR1034014
  28. [28] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69 (1986) 397–408. Zbl0613.35076MR867665
  29. [29] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition, Grundlehren 224. Springer, Berlin, Heidelberg, New York and Tokyo (1983). Zbl0562.35001MR737190
  30. [30] C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations. Comm. Partial Diff. Eq. 21 (1996) 787–820. Zbl0857.35116MR1391524
  31. [31] H. Hajaiej and C.A. Stuart, On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation. Advances Nonlinear Studies 4 (2004) 469–501. Zbl1068.35155MR2100909
  32. [32] L. Jeanjean and K. Tanaka, A remark on least energy solutions in N . Proc. Amer. Math. Soc. 131 (2003) 2399–2408. Zbl1094.35049MR1974637
  33. [33] L. Jeanjean and K. Tanaka, A note on a mountain pass characterization of least energy solutions. Advances Nonlinear Studies 3 (2003) 461–471. Zbl1095.35006MR2017241
  34. [34] L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asympotically linear nonlinearities. Calc. Var. Partial Diff. Equ. 21 (2004) 287–318. Zbl1060.35012MR2094325
  35. [35] K. Kurata, Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal. 41 (2000) 763–778. Zbl0993.35081MR1780643
  36. [36] Y.Y. Li, On a singularly perturbed elliptic equation. Adv. Diff. Equations 2 (1997) 955–980. Zbl1023.35500MR1606351
  37. [37] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223–283. Zbl0704.49004MR778974
  38. [38] Y.G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations. Comm. Partial Diff. Eq. 13 (1988) 1499–1519. Zbl0702.35228MR970154
  39. [39] M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations. Springer-Verlag, New York, Berlin, Heidelberg and Tokyo (1984). Zbl0549.35002MR762825
  40. [40] P. Rabinowitz, On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43 (1992) 270–291. Zbl0763.35087MR1162728
  41. [41] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. II. Academic press, New York (1972). Zbl0242.46001MR493419
  42. [42] S. Secchi and M. Squassina, On the location of spikes for the Schrödinger equations with electromagnetic field. Commun. Contemp. Math. 7 (2005) 251–268. Zbl1157.35482MR2140552
  43. [43] W. Strauss, Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55 (1977) 149–162. Zbl0356.35028MR454365
  44. [44] M. Struwe, Variational Methods, Application to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer-Verlag (1990). Zbl0746.49010MR1078018
  45. [45] X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equation with competing potential functions. SIAM J. Math. Anal. 28 (1997) 633–655. Zbl0879.35053MR1443612

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.