The entropy of Łukasiewicz-languages
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2005)
- Volume: 39, Issue: 4, page 621-639
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topStaiger, Ludwig. "The entropy of Łukasiewicz-languages." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 39.4 (2005): 621-639. <http://eudml.org/doc/244905>.
@article{Staiger2005,
abstract = {The paper presents an elementary approach for the calculation of the entropy of a class of languages. This approach is based on the consideration of roots of a real polynomial and is also suitable for calculating the Bernoulli measure. The class of languages we consider here is a generalisation of the Łukasiewicz language.},
author = {Staiger, Ludwig},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {entropy of languages; Bernoulli measure of languages; codes; Łukasiewicz language},
language = {eng},
number = {4},
pages = {621-639},
publisher = {EDP-Sciences},
title = {The entropy of Łukasiewicz-languages},
url = {http://eudml.org/doc/244905},
volume = {39},
year = {2005},
}
TY - JOUR
AU - Staiger, Ludwig
TI - The entropy of Łukasiewicz-languages
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 4
SP - 621
EP - 639
AB - The paper presents an elementary approach for the calculation of the entropy of a class of languages. This approach is based on the consideration of roots of a real polynomial and is also suitable for calculating the Bernoulli measure. The class of languages we consider here is a generalisation of the Łukasiewicz language.
LA - eng
KW - entropy of languages; Bernoulli measure of languages; codes; Łukasiewicz language
UR - http://eudml.org/doc/244905
ER -
References
top- [1] J.-M. Autebert, J. Berstel and L. Boasson, Context-Free Languages and Pushdown Automata, in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa. Springer-Verlag, Berlin 1 (1997) 111–174.
- [2] J. Berstel and D. Perrin, Theory of Codes. Academic Press, Orlando (1985). Zbl0587.68066MR797069
- [3] N. Chomsky and G.A. Miller, Finite-state languages. Inform. Control 1 (1958) 91–112. Zbl0081.14503
- [4] J. Devolder, M. Latteux, I. Litovski and L. Staiger, Codes and Infinite Words. Acta Cybernetica 11 (1994) 241–256. Zbl0938.68691
- [5] S. Eilenberg, Automata, Languages and Machines, Vol. A. Academic Press, New York (1974). Zbl0317.94045MR530382
- [6] H. Fernau, Valuations of Languages, with Applications to Fractal Geometry. Theoret. Comput. Sci. 137 (1995) 177–217. Zbl0873.68110
- [7] G. Hansel, D. Perrin and I. Simon, Entropy and compression, in STACS’92, edited by A. Finkel and M. Jantzen. Lect. Notes Comput. Sci. 577 (1992) 515–530.
- [8] R. Johannesson, Informations theorie. Addison-Wesley (1992).
- [9] J. Justesen and K. Larsen, On Probabilistic Context-Free Grammars that Achieve Capacity. Inform. Control 29 (1975) 268–285. Zbl0361.94030
- [10] F.P. Kaminger, The noncomputability of the channel capacity of context-sensitive languages. Inform. Control 17 (1970) 175–182. Zbl0196.01802
- [11] W. Kuich, On the entropy of context-free languages. Inform. Control 16 (1970) 173–200. Zbl0193.32603
- [12] M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and its Applications. Springer-Verlag, New York (1993). Zbl0805.68063MR1238938
- [13] L. Staiger, On infinitary finite length codes. RAIRO-Inf. Theor. Appl. 20 (1986) 483–494. Zbl0628.68056
- [14] L. Staiger, Ein Satz über die Entropie von Untermonoiden. Theor. Comput. Sci. 61 (1988) 279–282. Zbl0661.68075
- [15] L. Staiger, Kolmogorov complexity and Hausdorff dimension. Inform. Comput. 103 (1993) 159–194. Zbl0789.68076
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.