Moderate deviations for I.I.D. random variables
Peter Eichelsbacher; Matthias Löwe
ESAIM: Probability and Statistics (2003)
- Volume: 7, page 209-218
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topEichelsbacher, Peter, and Löwe, Matthias. "Moderate deviations for I.I.D. random variables." ESAIM: Probability and Statistics 7 (2003): 209-218. <http://eudml.org/doc/244931>.
@article{Eichelsbacher2003,
abstract = {We derive necessary and sufficient conditions for a sum of i.i.d. random variables $\sum _\{i=1\}^n X_i/b_n$ – where $\frac\{b_n\}\{n\} \downarrow 0$, but $\frac\{b_n\}\{\sqrt\{n\}\} \uparrow \infty $ – to satisfy a moderate deviations principle. Moreover we show that this equivalence is a typical moderate deviations phenomenon. It is not true in a large deviations regime.},
author = {Eichelsbacher, Peter, Löwe, Matthias},
journal = {ESAIM: Probability and Statistics},
keywords = {moderate deviations; large deviations},
language = {eng},
pages = {209-218},
publisher = {EDP-Sciences},
title = {Moderate deviations for I.I.D. random variables},
url = {http://eudml.org/doc/244931},
volume = {7},
year = {2003},
}
TY - JOUR
AU - Eichelsbacher, Peter
AU - Löwe, Matthias
TI - Moderate deviations for I.I.D. random variables
JO - ESAIM: Probability and Statistics
PY - 2003
PB - EDP-Sciences
VL - 7
SP - 209
EP - 218
AB - We derive necessary and sufficient conditions for a sum of i.i.d. random variables $\sum _{i=1}^n X_i/b_n$ – where $\frac{b_n}{n} \downarrow 0$, but $\frac{b_n}{\sqrt{n}} \uparrow \infty $ – to satisfy a moderate deviations principle. Moreover we show that this equivalence is a typical moderate deviations phenomenon. It is not true in a large deviations regime.
LA - eng
KW - moderate deviations; large deviations
UR - http://eudml.org/doc/244931
ER -
References
top- [1] A. de Acosta, Moderate deviations and associated Laplace approximations for sums of independent random vectors. Trans. Amer. Math. Soc. 329 (1992) 357-375. Zbl0751.60007MR1046015
- [2] M.A. Arcones, The large deviation principle for empirical processes. Preprint (1999).
- [3] M. van den Berg, E. Bolthausen and F. den Hollander, Moderate deviations for the volume of the Wiener sausage. Ann. Math. 153 (2001) 355-406. Zbl1004.60021MR1829754
- [4] H. Cramér, Sur un nouveau théorème-limite de la théorie des probabilités, Actualités Scientifique et Industrielles (736 Colloque consacré à la théorie des probabilités). Hermann (1938) 5-23. Zbl64.0529.01JFM64.0529.01
- [5] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Springer, New York (1998). Zbl0896.60013MR1619036
- [6] M. Djellout, Moderate deviations for martingale differences and applications to -mixing sequences. Stochastics and Stochastic Reports (to appear). Zbl1005.60044
- [7] P. Eichelsbacher and U. Schmock, Rank-dependent moderate deviations for -empirical measures in strong topologies (submitted). Zbl1039.60023
- [8] E. Giné and V. de la Peña, Decoupling: From dependence to independence. Springer-Verlag (1999). Zbl0918.60021MR1666908
- [9] M. Ledoux, Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi. Ann. Inst. H. Poincaré 28 (1992) 267-280. Zbl0751.60009MR1162575
- [10] M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer-Verlag, Berlin (1991). Zbl0748.60004MR1102015
- [11] M. Löwe and F. Merkl, Moderate deviations for longest increasing subsequences: The upper tail. Comm. Pure Appl. Math. 54 (2001) 1488-1520. Zbl1033.60035MR1852980
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.