Moderate deviations for I.I.D. random variables

Peter Eichelsbacher; Matthias Löwe

ESAIM: Probability and Statistics (2003)

  • Volume: 7, page 209-218
  • ISSN: 1292-8100

Abstract

top
We derive necessary and sufficient conditions for a sum of i.i.d. random variables i = 1 n X i / b n – where b n n 0 , but b n n – to satisfy a moderate deviations principle. Moreover we show that this equivalence is a typical moderate deviations phenomenon. It is not true in a large deviations regime.

How to cite

top

Eichelsbacher, Peter, and Löwe, Matthias. "Moderate deviations for I.I.D. random variables." ESAIM: Probability and Statistics 7 (2003): 209-218. <http://eudml.org/doc/244931>.

@article{Eichelsbacher2003,
abstract = {We derive necessary and sufficient conditions for a sum of i.i.d. random variables $\sum _\{i=1\}^n X_i/b_n$ – where $\frac\{b_n\}\{n\} \downarrow 0$, but $\frac\{b_n\}\{\sqrt\{n\}\} \uparrow \infty $ – to satisfy a moderate deviations principle. Moreover we show that this equivalence is a typical moderate deviations phenomenon. It is not true in a large deviations regime.},
author = {Eichelsbacher, Peter, Löwe, Matthias},
journal = {ESAIM: Probability and Statistics},
keywords = {moderate deviations; large deviations},
language = {eng},
pages = {209-218},
publisher = {EDP-Sciences},
title = {Moderate deviations for I.I.D. random variables},
url = {http://eudml.org/doc/244931},
volume = {7},
year = {2003},
}

TY - JOUR
AU - Eichelsbacher, Peter
AU - Löwe, Matthias
TI - Moderate deviations for I.I.D. random variables
JO - ESAIM: Probability and Statistics
PY - 2003
PB - EDP-Sciences
VL - 7
SP - 209
EP - 218
AB - We derive necessary and sufficient conditions for a sum of i.i.d. random variables $\sum _{i=1}^n X_i/b_n$ – where $\frac{b_n}{n} \downarrow 0$, but $\frac{b_n}{\sqrt{n}} \uparrow \infty $ – to satisfy a moderate deviations principle. Moreover we show that this equivalence is a typical moderate deviations phenomenon. It is not true in a large deviations regime.
LA - eng
KW - moderate deviations; large deviations
UR - http://eudml.org/doc/244931
ER -

References

top
  1. [1] A. de Acosta, Moderate deviations and associated Laplace approximations for sums of independent random vectors. Trans. Amer. Math. Soc. 329 (1992) 357-375. Zbl0751.60007MR1046015
  2. [2] M.A. Arcones, The large deviation principle for empirical processes. Preprint (1999). 
  3. [3] M. van den Berg, E. Bolthausen and F. den Hollander, Moderate deviations for the volume of the Wiener sausage. Ann. Math. 153 (2001) 355-406. Zbl1004.60021MR1829754
  4. [4] H. Cramér, Sur un nouveau théorème-limite de la théorie des probabilités, Actualités Scientifique et Industrielles (736 Colloque consacré à la théorie des probabilités). Hermann (1938) 5-23. Zbl64.0529.01JFM64.0529.01
  5. [5] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Springer, New York (1998). Zbl0896.60013MR1619036
  6. [6] M. Djellout, Moderate deviations for martingale differences and applications to φ -mixing sequences. Stochastics and Stochastic Reports (to appear). Zbl1005.60044
  7. [7] P. Eichelsbacher and U. Schmock, Rank-dependent moderate deviations for U -empirical measures in strong topologies (submitted). Zbl1039.60023
  8. [8] E. Giné and V. de la Peña, Decoupling: From dependence to independence. Springer-Verlag (1999). Zbl0918.60021MR1666908
  9. [9] M. Ledoux, Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi. Ann. Inst. H. Poincaré 28 (1992) 267-280. Zbl0751.60009MR1162575
  10. [10] M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer-Verlag, Berlin (1991). Zbl0748.60004MR1102015
  11. [11] M. Löwe and F. Merkl, Moderate deviations for longest increasing subsequences: The upper tail. Comm. Pure Appl. Math. 54 (2001) 1488-1520. Zbl1033.60035MR1852980

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.