On critical exponents in fixed points of -uniform binary morphisms
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2009)
- Volume: 43, Issue: 1, page 41-68
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topKrieger, Dalia. "On critical exponents in fixed points of $k$-uniform binary morphisms." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 43.1 (2009): 41-68. <http://eudml.org/doc/244935>.
@article{Krieger2009,
abstract = {Let $\mathbf \{w\}$ be an infinite fixed point of a binary $k$-uniform morphism $f$, and let $E(\mathbf \{w\})$ be the critical exponent of $\mathbf \{w\}$. We give necessary and sufficient conditions for $E(\mathbf \{w\})$ to be bounded, and an explicit formula to compute it when it is. In particular, we show that $E(\mathbf \{w\})$ is always rational. We also sketch an extension of our method to non-uniform morphisms over general alphabets.},
author = {Krieger, Dalia},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {critical exponent; binary $k$-uniform morphism; binary -uniform morphism},
language = {eng},
number = {1},
pages = {41-68},
publisher = {EDP-Sciences},
title = {On critical exponents in fixed points of $k$-uniform binary morphisms},
url = {http://eudml.org/doc/244935},
volume = {43},
year = {2009},
}
TY - JOUR
AU - Krieger, Dalia
TI - On critical exponents in fixed points of $k$-uniform binary morphisms
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2009
PB - EDP-Sciences
VL - 43
IS - 1
SP - 41
EP - 68
AB - Let $\mathbf {w}$ be an infinite fixed point of a binary $k$-uniform morphism $f$, and let $E(\mathbf {w})$ be the critical exponent of $\mathbf {w}$. We give necessary and sufficient conditions for $E(\mathbf {w})$ to be bounded, and an explicit formula to compute it when it is. In particular, we show that $E(\mathbf {w})$ is always rational. We also sketch an extension of our method to non-uniform morphisms over general alphabets.
LA - eng
KW - critical exponent; binary $k$-uniform morphism; binary -uniform morphism
UR - http://eudml.org/doc/244935
ER -
References
top- [1] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003). Zbl1086.11015MR1997038
- [2] J. Berstel, Axel Thue’s Papers on Repetitions in Words: A Translation. Publications du Laboratoire de Combinatoire et d’Informatique Mathématique 20, Université du Québec à Montréal (1995).
- [3] J. Berstel, On the Index of Sturmian Words, in Jewels are forever. Springer, Berlin (1999) 287–294. Zbl0982.11010MR1719097
- [4] W.-T. Cao and Z.-Y. Wen, Some properties of the factors of Sturmian sequences. Theoret. Comput. Sci. 304 (2003) 365–385. Zbl1045.68109MR1992341
- [5] A. Carpi and A. de Luca, Special factors, periodicity, and an application to Sturmian words. Acta Informatica 36 (2000) 983–1006. Zbl0956.68119MR1776146
- [6] J. Cassaigne, An algorithm to test if a given circular HD0L-language avoids a pattern, in IFIP World Computer Congress’94 1 (1994) 459–464. MR1318456
- [7] D. Damanik and D. Lenz, The index of Sturmian sequences. Eur. J. Combin. 23 (2002) 23–29. Zbl1002.11020MR1878771
- [8] A. Ehrenfeucht and G. Rozenberg, Repetition of subwords in D0L languages. Inform. Control 59 (1983) 13–35. Zbl0549.68076MR760154
- [9] N.J. Fine and H.S. Wilf, Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109–114. Zbl0131.30203MR174934
- [10] A.E. Frid, On uniform DOL words. STACS’98 1373 (1998) 544–554. MR1650675
- [11] J. Justin and G. Pirillo, Fractional powers in Sturmian words. Theoret. Comput. Sci. 255 (2001) 363–376. Zbl0974.68159MR1819081
- [12] A.V. Klepinin and E.V. Sukhanov, On combinatorial properties of the Arshon sequence. Discrete Appl. Math. 114 (2001) 155–169. Zbl0995.68506MR1865589
- [13] Y. Kobayashi and F. Otto, Repetitiveness of languages generated by morphisms. Theoret. Comput. Sci. 240 (2000) 337–378. Zbl0947.68086MR1776378
- [14] D. Krieger, On critical exponents in fixed points of binary k-uniform morphisms, in STACS 2006: 23rd Annual Symposium on Theoretical Aspects of Computer Science, edited by B. Durand and W. Thomas. Lect. Notes. Comput. Sci. 3884 (2006) 104–114. Zbl1137.68047MR2249361
- [15] D. Krieger, On critical exponents in fixed points of non-erasing morphisms. Theoret. Comput. Sci. 376 (2007) 70–88. Zbl1111.68058MR2316392
- [16] M. Lothaire, Algebraic Combinatorics on Words, Vol. 90 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press (2002). Zbl1001.68093MR1905123
- [17] R.C. Lyndon and M.P. Schützenberger, The equation in a free group. Michigan Math. J. 9 (1962) 289–298. Zbl0106.02204MR162838
- [18] F. Mignosi, Infinite words with linear subword complexity. Theoret. Comput. Sci. 65 (1989) 221–242. Zbl0682.68083MR1020489
- [19] F. Mignosi and G. Pirillo, Repetitions in the Fibonacci infinite word. RAIRO-Theor. Inf. Appl. 26 (1992) 199–204. Zbl0761.68078MR1170322
- [20] F. Mignosi and P. Séébold, If a D0L language is -power free then it is circular. ICALP’93. Lect. Notes Comput. Sci. 700 (1993) 507–518.
- [21] B. Mossé, Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theoret. Comput. Sci. 99 (1992) 327–334. Zbl0763.68049MR1168468
- [22] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67. Zbl44.0462.01JFM44.0462.01
- [23] D. Vandeth, Sturmian Words and Words with Critical Exponent. Theoret. Comput. Sci. 242 (2000) 283–300. Zbl0944.68148MR1769782
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.