A conjecture on the concatenation product
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2001)
- Volume: 35, Issue: 6, page 597-618
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topPin, Jean-Eric, and Weil, Pascal. "A conjecture on the concatenation product." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 35.6 (2001): 597-618. <http://eudml.org/doc/244944>.
@article{Pin2001,
abstract = {In a previous paper, the authors studied the polynomial closure of a variety of languages and gave an algebraic counterpart, in terms of Mal’cev products, of this operation. They also formulated a conjecture about the algebraic counterpart of the boolean closure of the polynomial closure – this operation corresponds to passing to the upper level in any concatenation hierarchy. Although this conjecture is probably true in some particular cases, we give a counterexample in the general case. Another counterexample, of a different nature, was independently given recently by Steinberg. Taking these two counterexamples into account, we propose a modified version of our conjecture and some supporting evidence for that new formulation. We show in particular that a solution to our new conjecture would give a solution of the decidability of the levels 2 of the Straubing–Thérien hierarchy and of the dot-depth hierarchy. Consequences for the other levels are also discussed.},
author = {Pin, Jean-Eric, Weil, Pascal},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {rational languages; star-free languages; concatenation products; concatenation hierarchies; dot-depth hierarchies; pseudovarieties of semigroups; Mal'cev products; varieties of languages; semidirect products},
language = {eng},
number = {6},
pages = {597-618},
publisher = {EDP-Sciences},
title = {A conjecture on the concatenation product},
url = {http://eudml.org/doc/244944},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Pin, Jean-Eric
AU - Weil, Pascal
TI - A conjecture on the concatenation product
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 6
SP - 597
EP - 618
AB - In a previous paper, the authors studied the polynomial closure of a variety of languages and gave an algebraic counterpart, in terms of Mal’cev products, of this operation. They also formulated a conjecture about the algebraic counterpart of the boolean closure of the polynomial closure – this operation corresponds to passing to the upper level in any concatenation hierarchy. Although this conjecture is probably true in some particular cases, we give a counterexample in the general case. Another counterexample, of a different nature, was independently given recently by Steinberg. Taking these two counterexamples into account, we propose a modified version of our conjecture and some supporting evidence for that new formulation. We show in particular that a solution to our new conjecture would give a solution of the decidability of the levels 2 of the Straubing–Thérien hierarchy and of the dot-depth hierarchy. Consequences for the other levels are also discussed.
LA - eng
KW - rational languages; star-free languages; concatenation products; concatenation hierarchies; dot-depth hierarchies; pseudovarieties of semigroups; Mal'cev products; varieties of languages; semidirect products
UR - http://eudml.org/doc/244944
ER -
References
top- [1] J. Almeida, Finite semigroups and universal algebra. Series in Algebra, Vol. 3. World Scientific, Singapore (1994). Zbl0844.20039MR1331143
- [2] J. Almeida and P. Weil, Free profinite -trivial monoids. Int. J. Algebra Comput. 7 (1997) 625-671. Zbl0892.20035MR1470356
- [3] M. Arfi, Polynomial operations and rational languages, in 4th STACS. Springer, Lecture Notes in Comput. Sci. 247 (1987) 198-206. Zbl0635.68078MR900454
- [4] M. Arfi, Opérations polynomiales et hiérarchies de concaténation. Theoret. Comput. Sci. 91 (1991) 71-84. Zbl0751.68031MR1142558
- [5] F. Blanchet–Sadri, On dot-depth two. RAIRO: Theoret. Informatics Appl. 24 (1990) 521-530. Zbl0718.68046
- [6] F. Blanchet–Sadri, On a complete set of generators for dot-depth two. Discrete Appl. Math. 50 (1994) 1-25. Zbl0793.68087
- [7] J.A. Brzozowski, Hierarchies of aperiodic languages. RAIRO Theoret. Informatics. Appl. 10 (1976) 33-49. MR428813
- [8] J.A. Brzozowski and R. Knast, The dot-depth hierarchy of star-free languages is infinite. J. Comput. System Sci. 16 (1978) 37-55. Zbl0368.68074MR471451
- [9] J.R. Büchi, Weak second-order arithmetic and finite automata. Z. Math. Logik und Grundl. Math. 6 (1960) 66-92. Zbl0103.24705MR125010
- [10] J.M. Champarnaud and G. Hansel, AUTOMATE, a computing package for automata and finite semigroups. J. Symb. Comput. 12 (1991) 197-220. Zbl0804.68096MR1125939
- [11] R.S. Cohen and J.A. Brzozowski, Dot-depth of star-free events. J. Comput. System Sci. 5 (1971) 1-15. Zbl0217.29602MR309676
- [12] D. Cowan, Inverse monoids of dot-depth . Int. J. Algebra and Comput. 3 (1993) 411-424. Zbl0816.20064MR1250245
- [13] S. Eilenberg. Automata, languages and machines, Vol. B. Academic Press, New York (1976). Zbl0359.94067MR530383
- [14] V. Froidure and J.-E. Pin, Algorithms for computing finite semigroups, in Foundations of Computational Mathematics, edited by F. Cucker and M. Shub. Springer, Berlin (1997) 112-126. Zbl0876.20034MR1661975
- [15] C. Glaßer and H. Schmitz, Languages of dot-depth 3/2, in Proc. 17th Symposium on Theoretical Aspects of Computer Science. Springer, Lecture Notes in Comput. Sci. 1770 (2000) 555-566. Zbl0962.68093MR1781762
- [16] C. Glaßer and H. Schmitz, Decidable Hierarchies of Starfree Languages, in Foundations of Software Technology and Theoretical Computer Science (FSTTCS). Springer, Lecture Notes in Comput. Sci. 1974 (2000) 503-515. Zbl1044.68091MR1850121
- [17] C. Glaßer and H. Schmitz, Concatenation Hierarchies and Forbidden Patterns, Technical Report No. 256. University of Wuerzburg (2000).
- [18] C. Glaßer and H. Schmitz, Level of the Straubing–Thérien hierarchy for two-letter alphabets (to appear). Zbl1073.68046
- [19] T. Hall and P. Weil, On radical congruence systems. Semigroup Forum 59 (1999) 56-73. Zbl0946.20033MR1847942
- [20] K. Henckell, S.W. Margolis, J.-E. Pin and J. Rhodes, Ash’s Type II Theorem, Profinite Topology and Malcev Products. Int. J. Algebra and Comput. 1 (1991) 411-436. Zbl0791.20079
- [21] R. Knast, A semigroup characterization of dot-depth one languages. RAIRO: Theoret. Informatics Appl. 17 (1983) 321-330. Zbl0522.68063MR743892
- [22] R. Knast, Some theorems on graph congruences. RAIRO: Theoret. Informatics Appl. 17 (1983) 331-342. MR743893
- [23] R. McNaughton and S. Pappert, Counter-free Automata. MIT Press (1971). Zbl0232.94024MR371538
- [24] S.W. Margolis and J.-E. Pin, Product of group languages, in FCT Conference. Springer, Lecture Notes in Comput. Sci. 199 (1985) 285-299. Zbl0602.68063MR821246
- [25] S.W. Margolis and B. Steinberg, Power semigroups and polynomial closure, in Proc. of the Third International Colloquium on Words, Languages and Combinatorics (to appear). MR2028884
- [26] J.-E. Pin, Hiérarchies de concaténation. RAIRO: Theoret. Informatics Appl. 18 (1984) 23-46. Zbl0559.68062MR750449
- [27] J.-E. Pin, Variétés de langages formels. Masson, Paris (1984); English translation: Varieties of formal languages. Plenum, New-York (1986). Zbl0636.68093MR752695
- [28] J.-E. Pin, A property of the Schützenberger product. Semigroup Forum 35 (1987) 53-62. Zbl0618.20040MR880350
- [29] J.-E. Pin, A variety theorem without complementation. Izvestiya VUZ Matematika 39 (1995) 80-90. English version, Russian Mathem. (Iz. VUZ) 39 (1995) 74-83. Zbl0852.20059MR1391325
- [30] J.-E. Pin, Syntactic semigroups, Chap. 10, in Handbook of formal languages, edited by G. Rozenberg and A. Salomaa. Springer (1997). MR1470002
- [31] J.-E. Pin, Bridges for concatenation hierarchies, in 25th ICALP. Springer, Berlin, Lecture Notes in Comput. Sci. 1443 (1998) 431-442. Zbl0909.68113MR1683494
- [32] J.-E. Pin, Algebraic tools for the concatenation product. Theoret. Comput. Sci. (to appear). Zbl1064.68057MR1964641
- [33] J.-E. Pin and H. Straubing, Monoids of upper triangular matrices. Colloq. Math. Soc. János Bolyai 39 (1981) 259-272. Zbl0635.20028MR873155
- [34] J.-E. Pin and P. Weil, A Reiterman theorem for pseudovarieties of finite first-order structures. Algebra Universalis 35 (1996) 577-595. Zbl0864.03024MR1392285
- [35] J.-E. Pin& P. Weil, Profinite semigroups, Mal’cev products and identities. J. Algebra 182 (1996) 604-626. Zbl0857.20040
- [36] J.-E. Pin and P. Weil, Polynomial closure and unambiguous product. Theory Comput. Systems 30 (1997) 1-39. Zbl0872.68119MR1450862
- [37] J.-E. Pin and P. Weil, The wreath product principle for ordered semigroups. Comm. in Algebra (to appear). Zbl1017.06008MR1941918
- [38] M.P. Schützenberger, On finite monoids having only trivial subgroups. Inform. and Control 8 (1965) 190-194. Zbl0131.02001MR176883
- [39] V. Selivanov, A logical approach to decidability of hierarchies of regular star-free languages, in Proc. STACS 2001. Springer, Lecture Notes in Comput. Sci. 2010 (2001) 539-550. Zbl0976.03042MR1892340
- [40] I. Simon, Piecewise testable events, in Proc. 2nd GI Conf. Springer, Lecture Notes in Comput. Sci. 33 (1975) 214-222. Zbl0316.68034MR427498
- [41] B. Steinberg, Polynomial closure and topology. Int. J. Algebra and Comput. 10 (2000) 603-624. Zbl1010.20045MR1781850
- [42] H. Straubing, Aperiodic homomorphisms and the concatenation product of recognizable sets. J. Pure Appl. Algebra 15 (1979) 319-327. Zbl0407.20056MR537504
- [43] H. Straubing, A generalization of the Schützenberger product of finite monoids. Theory Comput. Systems 13 (1981) 137-150. Zbl0456.20048MR594057
- [44] H. Straubing, Relational morphisms and operations on recognizable sets. RAIRO: Theoret. Informatics Appl. 15 (1981) 149-159. Zbl0463.20049MR618452
- [45] H. Straubing, Finite semigroups varieties of the form . J. Pure Appl. Algebra 36 (1985) 53-94. Zbl0561.20042MR782639
- [46] H. Straubing. Semigroups and languages of dot-depth two. Theoret. Comput. Sci. 58 (1988) 361-378. Zbl0655.18004MR963270
- [47] H. Straubing and P. Weil, On a conjecture concerning dot-depth two languages. Theoret. Comput. Sci. 104 (1992) 161-183. Zbl0762.68037MR1186177
- [48] D. Thérien, Classification of finite monoids: The language approach. Theoret. Comput. Sci. 14 (1981) 195-208. Zbl0471.20055MR614416
- [49] W. Thomas, Classifying regular events in symbolic logic. J. Comput. Syst. Sci. 25 (1982) 360-375. Zbl0503.68055MR684265
- [50] W. Thomas, An application of the Ehrenfeucht–Fraïssé game in formal language theory. Bull. Soc. Math. France 16 (1984) 11-21. Zbl0558.68064
- [51] W. Thomas, A concatenation game and the dot-depth hierarchy, in Computation Theory and Logic, edited by E. Böger. Springer, Lecture Notes in Comput. Sci. 270 (1987) 415-426. Zbl0643.68073MR907535
- [52] P. Trotter& P. Weil, The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue. Algebra Universalis 37 (1997) 491-526. Zbl0906.20036MR1465305
- [53] P. Weil, Inverse monoids of dot-depth two. Theoret. Comput. Sci. 66 (1989) 233-245. Zbl0678.68075MR1018561
- [54] P. Weil, Some results on the dot-depth hierarchy. Semigroup Forum 46 (1993) 352-370. Zbl0778.20025MR1206213
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.