Finite volume methods for convection-diffusion equations with right-hand side in H - 1

Jérôme Droniou; Thierry Gallouët

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2002)

  • Volume: 36, Issue: 4, page 705-724
  • ISSN: 0764-583X

Abstract

top
We prove the convergence of a finite volume method for a noncoercive linear elliptic problem, with right-hand side in the dual space of the natural energy space of the problem.

How to cite

top

Droniou, Jérôme, and Gallouët, Thierry. "Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.4 (2002): 705-724. <http://eudml.org/doc/244973>.

@article{Droniou2002,
abstract = {We prove the convergence of a finite volume method for a noncoercive linear elliptic problem, with right-hand side in the dual space of the natural energy space of the problem.},
author = {Droniou, Jérôme, Gallouët, Thierry},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite volumes; convection-diffusion equations; noncoercivity; non-regular data; finite volume method; convergence; linear elliptic problem},
language = {eng},
number = {4},
pages = {705-724},
publisher = {EDP-Sciences},
title = {Finite volume methods for convection-diffusion equations with right-hand side in $H^\{-1\}$},
url = {http://eudml.org/doc/244973},
volume = {36},
year = {2002},
}

TY - JOUR
AU - Droniou, Jérôme
AU - Gallouët, Thierry
TI - Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 4
SP - 705
EP - 724
AB - We prove the convergence of a finite volume method for a noncoercive linear elliptic problem, with right-hand side in the dual space of the natural energy space of the problem.
LA - eng
KW - finite volumes; convection-diffusion equations; noncoercivity; non-regular data; finite volume method; convergence; linear elliptic problem
UR - http://eudml.org/doc/244973
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
  2. [2] Y. Coudière, J.P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection diffusion problem. ESAIM: M2AN 33 (1999) 493–516. Zbl0937.65116
  3. [3] J. Droniou, Non-coercive linear elliptic problems. Potential Anal. 17 (2002) 181–203. Zbl1161.35362
  4. [4] J. Droniou, Ph.D. thesis, CMI, Université de Provence. 
  5. [5] R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, in Handbook of Numerical Analysis, Vol. VII, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991) 713–1020. Zbl0981.65095
  6. [6] R. Eymard, T. Gallouët and R. Herbin, Convergence of finite volume approximations to the solutions of semilinear convection diffusion reaction equations. Numer. Math. 82 (1999) 91–116. Zbl0930.65118
  7. [7] J.M. Fiard and R. Herbin, Comparison between finite volume finite element methods for the numerical simulation of an elliptic problem arising in electrochemical engineering. Comput. Methods Appl. Mech. Engrg. 115 (1994) 315–338. 
  8. [8] P.A. Forsyth and P.H. Sammon, Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377–394. Zbl0651.65086
  9. [9] T. Gallouët, R. Herbin and M.H. Vignal, Error estimate for the approximate finite volume solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary conditions. SIAM J. Numer. Anal. (2000). Zbl1052.65553MR1766855

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.