Controlled functional differential equations : approximate and exact asymptotic tracking with prescribed transient performance
Eugene P. Ryan; Chris J. Sangwin; Philip Townsend
ESAIM: Control, Optimisation and Calculus of Variations (2009)
- Volume: 15, Issue: 4, page 745-762
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag, Berlin (1984). Zbl0538.34007MR755330
- [2] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer, New York (1996). Zbl0951.74002MR1411908
- [3] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). Zbl0582.49001MR709590
- [4] A. Ilchmann, Non-Identifier-Based High-Gain Adaptive Control. Springer-Verlag, London (1993). Zbl0786.93059MR1240052
- [5] A. Ilchmann, E.P. Ryan and C.J. Sangwin, Systems of controlled functional differential equations and adaptive tracking. SIAM J. Contr. Opt. 40 (2002) 1746–1764. Zbl1015.93027MR1897194
- [6] A. Ilchmann, E.P. Ryan and C.J. Sangwin, Tracking with prescribed transient behaviour. ESAIM: COCV 7 (2002) 471–493. Zbl1044.93022MR1925038
- [7] A. Ilchmann, E.P. Ryan and P.N. Townsend, Tracking control with prescribed transient behaviour for systems of known relative degree. Systems Control Lett. 55 (2006) 396–406. Zbl1129.93502MR2211057
- [8] A. Ilchmann, E.P. Ryan and P.N. Townsend, Tracking with prescribed transient behaviour for nonlinear systems of known relative degree. SIAM J. Contr. Opt. 46 (2007) 210–230. Zbl1141.93031MR2299626
- [9] P.D. Loewen, Optimal Control via Nonsmooth Analysis, CRM Proc. & Lecture Notes 2. AMS, Providence RI (1993). Zbl0874.49002MR1232864
- [10] H. Logemann and A.D. Mawby, Low-gain integral control of infinite dimensional regular linear systems subject to input hysteresis, in Advances in Mathematical Systems Theory, F. Colonius, U. Helmke, D. Prätzel-Wolters and F. Wirth Eds., Birkhäuser Verlag, Boston (2001) 255–293. MR1787350
- [11] R.D. Nussbaum, Some remarks on a conjecture in parameter adaptive control. Systems Control Lett. 3 (1983) 243–246. Zbl0524.93037MR722952
- [12] E.P. Ryan and C.J. Sangwin, Controlled functional differential equations and adaptive stabilization. Int. J. Control 74 (2001) 77–90. Zbl1009.93068MR1824464
- [13] E.D. Sontag, Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34 (1989) 435–443. Zbl0682.93045MR987806
- [14] E.D. Sontag, Adaptation and regulation with signal detection implies internal model. Systems Control Lett. 50 (2003) 119–126. Zbl1157.93394MR2012301
- [15] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer-Verlag, New York (1982). Zbl0504.58001MR681294
- [16] M. Vidyasagar, Control System Synthesis: A Factorization Approach. MIT Press, Cambridge (1985). Zbl0655.93001MR787045
- [17] W.M. Wonham, Linear Multivariable Control: A Geometric Approach. 2nd edn., Springer-Verlag, New York (1979). Zbl0424.93001MR569358