Asymptotic behaviour of stochastic quasi dissipative systems
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 8, page 587-602
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topPrato, Giuseppe Da. "Asymptotic behaviour of stochastic quasi dissipative systems." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 587-602. <http://eudml.org/doc/245082>.
@article{Prato2002,
abstract = {We prove uniqueness of the invariant measure and the exponential convergence to equilibrium for a stochastic dissipative system whose drift is perturbed by a bounded function.},
author = {Prato, Giuseppe Da},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {stochastic systems; reaction-diffusion equations; invariant measures},
language = {eng},
pages = {587-602},
publisher = {EDP-Sciences},
title = {Asymptotic behaviour of stochastic quasi dissipative systems},
url = {http://eudml.org/doc/245082},
volume = {8},
year = {2002},
}
TY - JOUR
AU - Prato, Giuseppe Da
TI - Asymptotic behaviour of stochastic quasi dissipative systems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 587
EP - 602
AB - We prove uniqueness of the invariant measure and the exponential convergence to equilibrium for a stochastic dissipative system whose drift is perturbed by a bounded function.
LA - eng
KW - stochastic systems; reaction-diffusion equations; invariant measures
UR - http://eudml.org/doc/245082
ER -
References
top- [1] J.M. Bismut, Large deviations and the Malliavin Calculus. Birkhäuser (1984). Zbl0537.35003MR755001
- [2] H. Brézis, Opérateurs maximaux monotones. North-Holland, Amsterdam (1973).
- [3] S. Cerrai, A Hille–Yosida theorem for weakly continuous semigroups. Semigroup Forum 49 (1994) 349-367. Zbl0817.47048
- [4] S. Cerrai, Second order PDE’s in finite and infinite dimensions. A probabilistic approach. Springer, Lecture Notes in Math. 1762 (2001). Zbl0983.60004
- [5] S. Cerrai, Optimal control problems for stochastic reaction-diffusion systems with non Lipschitz coefficients. SIAM J. Control Optim. 39 (2001) 1779-1816. Zbl0987.60073MR1825865
- [6] S. Cerrai, Stationary Hamilton–Jacobi equations in Hilbert spaces and applications to a stochastic optimal control problem. SIAM J. Control Optim. (to appear). Zbl0992.60066
- [7] G. Da Prato, Stochastic evolution equations by semigroups methods. Centre de Recerca Matematica, Barcelona, Quaderns 11 (1998).
- [8] G. Da Prato, A. Debussche and B. Goldys, Invariant measures of non symmetric dissipative stochastic systems. Probab. Theor. Related Fields (to appear). Zbl1087.60049MR1918538
- [9] G. Da Prato, D. Elworthy and J. Zabczyk, Strong Feller property for stochastic semilinear equations. Stochastic Anal. Appl. 13 (1995) 35-45. Zbl0817.60081MR1313205
- [10] G. Da Prato and M. Röckner, Singular dissipative stochastic equations in Hilbert spaces, Preprint. S.N.S. Pisa (2001). Zbl1036.47029MR1936019
- [11] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge University Press (1992). Zbl0761.60052MR1207136
- [12] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems. Cambridge University Press, London Math. Soc. Lecture Notes 229 (1996). Zbl0849.60052MR1417491
- [13] G. Da Prato and J. Zabczyk, Differentiability of the Feynman–Kac semigroup and a control application. Rend. Mat. Accad. Lincei. 8 (1997) 183-188. Zbl0910.93025
- [14] E.B. Dynkin, Markov Processes, Vol. I. Springer-Verlag (1965). Zbl0132.37901
- [15] K.D. Elworthy, Stochastic flows on Riemannian manifolds, edited by M.A. Pinsky and V. Wihstutz. Birkhäuser, Diffusion Processes and Related Problems in Analysis II (1992) 33-72. Zbl0758.58035MR1187985
- [16] W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. Springer-Verlag (1993). Zbl0773.60070MR1199811
- [17] T. Kato, Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 10 (1967) 508-520. Zbl0163.38303MR226230
- [18] K.R. Parthasarathy, Probability measures on metric spaces. Academic Press (1967). Zbl0153.19101MR226684
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.