Asymptotic behaviour of bi-infinite words
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2004)
- Volume: 38, Issue: 1, page 27-48
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topForyś, Wit. "Asymptotic behaviour of bi-infinite words." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 38.1 (2004): 27-48. <http://eudml.org/doc/245185>.
@article{Foryś2004,
	abstract = {We present a description of asymptotic behaviour of languages of bi-infinite words obtained by iterating morphisms defined on free monoids.},
	author = {Foryś, Wit},
	journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
	keywords = {bi-infinite words; morphisms; iteration; boundary set},
	language = {eng},
	number = {1},
	pages = {27-48},
	publisher = {EDP-Sciences},
	title = {Asymptotic behaviour of bi-infinite words},
	url = {http://eudml.org/doc/245185},
	volume = {38},
	year = {2004},
}
TY  - JOUR
AU  - Foryś, Wit
TI  - Asymptotic behaviour of bi-infinite words
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2004
PB  - EDP-Sciences
VL  - 38
IS  - 1
SP  - 27
EP  - 48
AB  - We present a description of asymptotic behaviour of languages of bi-infinite words obtained by iterating morphisms defined on free monoids.
LA  - eng
KW  - bi-infinite words; morphisms; iteration; boundary set
UR  - http://eudml.org/doc/245185
ER  - 
References
top- [1] A. Ehrenfeucht and G. Rozenberg, Simplifications of homomorphism. Inform. Control 38 (1978) 298–309. Zbl0387.68062
- [2] W. Foryś and T. Head, The poset of retracts of a free monoid. Int. J. Comput. Math. 37 (1990) 45–48. Zbl0723.68060
- [3] T. Harju and M. Linna, On the periodicity of morphism on free monoid. RAIRO: Theoret. Informatics Appl. 20 (1986) 47–54. Zbl0608.68065
- [4] T. Head, Expanded subalphabets in the theories of languages and semigroups. Int. J. Comput. Math. 12 (1982) 113–123. Zbl0496.68050
- [5] T. Head and V. Lando, Fixed and stationary -wors and -languages. The book of L, Springer-Verlag, Berlin (1986) 147–155. Zbl0586.68063
- [6] M. Lothaire, Combinatorics on words. Addison-Wesley (1983). Zbl0514.20045MR675953
- [7] J. Matyja, Sets of primitive words given by fixed points of mappings. Int. J. Comput. Math. (to appear). Zbl0992.68162MR1833764
- [8] P. Narbel, Limits and boundaries of words and tiling substitutions. LITP, TH93.12 (1993).
- [9] P. Narbel, The boundary of iterated morphisms on free semi-groups. Int. J. Algebra Comput. 6 (1996) 229–260. Zbl0852.68074
- [10] J. Shallit and M. Wang, On two-sided infinite fixed points of morphisms. Lect. Notes Comput. Sci. 1684 (1999) 488–499. Zbl0945.68115
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 