Inequality-sum : a global constraint capturing the objective function
Jean-Charles Régin; Michel Rueher
RAIRO - Operations Research - Recherche Opérationnelle (2005)
- Volume: 39, Issue: 2, page 123-139
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows. Prentice Hall (1993). MR1205775
- [2] N. Beldiceanu and E. Contejean, Introducing global constraints in chip. J. Math. Comput. Model. 20 (1994) 97–123. Zbl0816.68048
- [3] J. Blazewicz, K. Ecker, G. Schmidt and J. Weglarz, Scheduling in Computer and Manufacturing Systems. Springer-Verlag (1993). Zbl0767.90033
- [4] J. Carlier and E. Pinson, A practical use of jackson’s preemptive schedule for solving the job-shop problem. Ann. Oper. Res. 26 (1990) 269–287. Zbl0709.90061
- [5] R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks. Artif. Intell. 49 (1991) 61–95. Zbl0737.68070
- [6] M. Dror, W. Kubiak and P. Dell’Olmo, Scheduling chains to minimize mean flow time. Inform. Process. Lett. 61 (1997) 297–301.
- [7] P. Van Hentenryck and Y. Deville, The cardinality operator: A new logical connective for constraint logic programming, in Proc. of ICLP’91 (1991) 745–759.
- [8] P. Van Hentenryck, V. Saraswat and Y. Deville, Design, implementation, and evaluation of the constraint language cc(FD). J. Logic Program. 37 (1998) 139–164. Zbl0920.68026
- [9] M. Rueher and J.-C. Régin, A global constraint combining a sum constraint and difference constraints, in Proc. of CP’2000, Sixth International Conference on Principles and Practice of Constraint Programming. Singapore, Springer-Verlag. Lect. Notes Comput. Sci. 1894 (2000) 384–395. Zbl1044.68794
- [10] C.E. Leiserson and J.B. Saxe, A mixed-integer linear programming problem which is efficiently solvable. J. Algorithms 9 (1988) 114–128. Zbl0649.90077
- [11] J.-C. Régin, A filtering algorithm for constraints of difference in CSPs, in Proc. of AAAI-94. Seattle, Washington (1994) 362–367.
- [12] J.-C. Régin, Generalized arc consistency for global cardinality constraint, in Proc. of AAAI-96, Portland, Oregon (1996) 209–215.
- [13] H. Simonis, Problem classification scheme for finite domain constraint solving, in CP96, Workshop on Constraint Programming Applications: An Inventory and Taxonomy, Cambridge, MA, USA (1996) 1–26.
- [14] R.E. Tarjan, Data Structures and Network Algorithms. CBMS 44 SIAM (1983). Zbl0584.68077MR826534
- [15] P. Van Hentenryck, Y. Deville and C.-M. Teng, A generic arc-consistency algorithm and its specializations. Artif. Intell. 57 (October 1992) 291–321. Zbl0763.68059