Recherche à voisinage variable de graphes extrémaux 13. A propos de la maille
Mustapha Aouchiche; Pierre Hansen
RAIRO - Operations Research - Recherche Opérationnelle (2005)
- Volume: 39, Issue: 4, page 275-293
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topAouchiche, Mustapha, and Hansen, Pierre. "Recherche à voisinage variable de graphes extrémaux 13. A propos de la maille." RAIRO - Operations Research - Recherche Opérationnelle 39.4 (2005): 275-293. <http://eudml.org/doc/245300>.
@article{Aouchiche2005,
abstract = {Le système AutoGraphiX (AGX1 et AGX2) permet, parmi d’autres fonctions, la génération automatique de conjectures en théorie des graphes et, dans une version plus récente, la preuve automatique de conjectures simples. Afin d’illustrer ces fonctions et le type de résultats obtenus, nous étudions systématiquement ici des conjectures obtenues par ce système et de la forme $\underline\{b\}_\{n\} \, \le \, g \, \oplus \, i \, \le \, \overline\{b\}_\{n\}$ où $g $ désigne la maille (ou longueur du plus petit cycle) du graphe $G=(V, E)$, $i $ un autre invariant choisi parmi le nombre de stabilité, le rayon, le diamètre, le degré minimum, moyen ou maximum, $\underline\{b\}_\{n\} $ et $ \overline\{b\}_\{n\} $ des fonctions de l’ordre $ n = |V|$ de $G$ les meilleures possibles, enfin $ \oplus $ correspond à une des opérations $ +, -, \times , /$. 48 telles conjectures sont obtenues : les plus simples sont démontrées automatiquement et les autres à la main. De plus 12 autres conjectures ouvertes et non encore étudiées sont soumises aux lecteurs.},
author = {Aouchiche, Mustapha, Hansen, Pierre},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {graphe; invariant; conjecture; AGX; maille},
language = {fre},
number = {4},
pages = {275-293},
publisher = {EDP-Sciences},
title = {Recherche à voisinage variable de graphes extrémaux 13. A propos de la maille},
url = {http://eudml.org/doc/245300},
volume = {39},
year = {2005},
}
TY - JOUR
AU - Aouchiche, Mustapha
AU - Hansen, Pierre
TI - Recherche à voisinage variable de graphes extrémaux 13. A propos de la maille
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 4
SP - 275
EP - 293
AB - Le système AutoGraphiX (AGX1 et AGX2) permet, parmi d’autres fonctions, la génération automatique de conjectures en théorie des graphes et, dans une version plus récente, la preuve automatique de conjectures simples. Afin d’illustrer ces fonctions et le type de résultats obtenus, nous étudions systématiquement ici des conjectures obtenues par ce système et de la forme $\underline{b}_{n} \, \le \, g \, \oplus \, i \, \le \, \overline{b}_{n}$ où $g $ désigne la maille (ou longueur du plus petit cycle) du graphe $G=(V, E)$, $i $ un autre invariant choisi parmi le nombre de stabilité, le rayon, le diamètre, le degré minimum, moyen ou maximum, $\underline{b}_{n} $ et $ \overline{b}_{n} $ des fonctions de l’ordre $ n = |V|$ de $G$ les meilleures possibles, enfin $ \oplus $ correspond à une des opérations $ +, -, \times , /$. 48 telles conjectures sont obtenues : les plus simples sont démontrées automatiquement et les autres à la main. De plus 12 autres conjectures ouvertes et non encore étudiées sont soumises aux lecteurs.
LA - fre
KW - graphe; invariant; conjecture; AGX; maille
UR - http://eudml.org/doc/245300
ER -
References
top- [1] M. Aouchiche, J.-M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J. Lacheré and A. Monhait, Variable Neighborhood Search for Extremal Graphs. 14. The AutoGraphiX 2 System. Global Optimization: From Theory to Implementation, edited by L. Liberti and N. Maculan, Springer (2005). Zbl1100.90052
- [2] M. Aouchiche, G. Caporossi and P. Hansen, Automated Comparison of Graph Invariants. Les Cahiers du GERAD, G–2005–40, rapport technique, HEC Montréal (2005) 21 pages. Zbl1274.05235
- [3] S. Belhaiza, N.M.M. de Abreu, P. Hansen and C.S. Oliveira, Variable Neighborhood Search for Extremal Graphs 11. Bounds on Algebraic Connectivity, edited by D. Avis, A. Hertz and O. Marcotte, Graph Theory and Combinatorial Optimization, Dordrecht, Kluwer (2005) 1–16. Zbl1096.05027
- [4] R. C. Brigham and R. D. Dutton, A Compilation of Relations between Graph Invariants. Networks 21 (1991) 421–455. Zbl0743.05057
- [5] G. Caporossi, D. Cvetkovic, I. Gutman and P. Hansen, Variable Neighborhood Search for Extremal Graphs. 2. Finding Graphs with Extremal Energy. J. Chem. Inform. Comput. Sci. 39 (1999) 984–996.
- [6] G. Caporossi, I. Gutman and P. Hansen, Variable Neighborhood Search for Extremal Graphs. 4. Chemical Trees with Extremal Connectivity Index. Comput. Chem. 23 (1999) 469–477.
- [7] G. Caporossi and P. Hansen, Variable Neighborhood Search for Extremal Graphs. I. The AutoGraphiX System. Discrete Math. 212 (2000) 29–44. Zbl0947.90130
- [8] G. Caporossi and P. Hansen, Variable Neighborhood Search for Extremal Graphs. V. Three Ways to Automate Finding Conjectures. Discrete Math. 276 (2004) 81–94. Zbl1031.05068
- [9] F.R.K. Chung, The Average Distance and the Independence Number. J. Graph Theory 12 (1988) 229–235. Zbl0644.05029
- [10] D. Cvetković, S. Simić, G. Caporossi and P. Hansen, Variable Neighborhood Search for Extremal Graphs. III. On the Largest Eigenvalue of Color-Constrained Trees. Linear Multilinear Algebra 49 (2001) 143–160. Zbl1003.05058
- [11] D. Cvetković and S. Simić, Graph Theoretical Results Obtained by the Support of the Expert System “GRAPH” - an Extended Survey. In [13]. Zbl1108.05061
- [12] S. Fajtlowicz, On Conjectures of Graffiti. Discrete Math. 72 (1988) 113–118. Zbl0711.68081
- [13] Graphs and Discovery. DIMACS Series in Discrete Math. and Theoretical Computer Science, edited by S. Fajtlowicz, P. Fowler, P. Hansen, M. Janowitz and F. Roberts, Providence, AMS (2005). Zbl1087.05001MR2193475
- [14] I. Gutman, P. Hansen and H. Mélot, Variable Neighborhood Search for Extremal Graphs. 10. Comparison of Irregularity Indices for Chemical Trees. J. Chem. Inform. Comput. Sci. (2005, to appear). Zbl1274.05241MR2143222
- [15] P. Hansen, Computers in Graph Theory. Graph Theory Notes of New York 43 (2002) 20–34.
- [16] P. Hansen, How Far Is, Should and Could Be Conjecture-Making in Graph Theory an Automated Process ? In [13]. Zbl1097.68588
- [17] P. Hansen and H. Mélot, Variable Neighborhood Search for Extremal Graphs. 6. Analyzing Bounds for the Connectivity Index. J. Chem. Inform. Comput. Sci. 43 (2003) 1–14.
- [18] P. Hansen and H. Mélot, Variable Neighborhood Search for Extremal Graphs. 9. Bounding the Irregularity of a Graph. In [13]. Zbl1095.05019
- [19] P. Hansen and N. Mladenović, Variable Neighborhood Search: Principles and Applications. Eur. J. Oper. Res. 130 (2001) 449–467. Zbl0981.90063
- [20] N. Mladenović and P. Hansen, Variable Neighborhood Search. Comput. Oper. Res. 24 (1997) 1097–1100. Zbl0889.90119
- [21] E.A. Nordhaus and J.W. Gaddum, On Complementary Graphs. Amer. Math. Monthly 63 (1956) 175–177. Zbl0070.18503
- [22] B.A. Smith, Private communication (2004).
- [23] P. Turán, Eine Extremalaufgabe aus der Graphentheorie. (Hungarian) Mat. Fiz. Lapok 48 (1941) 436–452. Zbl0026.26903
- [24] Written on the wall. Electronic file available from http://math.uh.edu/~clarson/ (1999).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.