Lipschitz stability in the determination of the principal part of a parabolic equation
Ganghua Yuan; Masahiro Yamamoto
ESAIM: Control, Optimisation and Calculus of Variations (2009)
- Volume: 15, Issue: 3, page 525-554
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topYuan, Ganghua, and Yamamoto, Masahiro. "Lipschitz stability in the determination of the principal part of a parabolic equation." ESAIM: Control, Optimisation and Calculus of Variations 15.3 (2009): 525-554. <http://eudml.org/doc/245358>.
@article{Yuan2009,
abstract = {Let $y(h)(t,x)$ be one solution to\[ \partial \_t y(t,x) - \sum \_\{i, j=1\}^\{n\}\partial \_\{j\} (a\_\{ij\}(x)\partial \_i y(t,x)) = h(t,x), \,0<t<T, \,x\in \Omega \]with a non-homogeneous term $h$, and $y\vert _\{(0,T)\times \partial \Omega \} = 0$, where $\Omega \subset \mathbb \{R\}^n$ is a bounded domain. We discuss an inverse problem of determining $n(n+1)/2$ unknown functions $a_\{ij\}$ by $\lbrace \partial _\{\nu \}y(h_\{\ell \})\vert _\{(0,T)\times \Gamma _0\}$, $y(h_\{\ell \})(\theta ,\cdot )\rbrace _\{1\le \ell \le \ell _0\}$ after selecting input sources $h_1, ..., h_\{\ell _0\}$ suitably, where $\Gamma _0$ is an arbitrary subboundary, $\partial _\{\nu \}$ denotes the normal derivative, $0 < \theta < T$ and $\ell _0 \in \mathbb \{N\}$. In the case of $\ell _0 = (n+1)^2n/2$, we prove the Lipschitz stability in the inverse problem if we choose $(h_1, ..., h_\{\ell _0\})$ from a set $\{\mathcal \{H\}\} \subset \lbrace C_0^\{\infty \} ((0,T)\times \omega )\rbrace ^\{\ell _0\}$ with an arbitrarily fixed subdomain $\omega \subset \Omega $. Moreover we can take $\ell _0 = (n+3)n/2$ by making special choices for $h_\{\ell \}$, $1 \le \ell \le \ell _0$. The proof is based on a Carleman estimate.},
author = {Yuan, Ganghua, Yamamoto, Masahiro},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {inverse parabolic problem; Carleman estimate; Lipschitz stability; parabolic equation; Lipshitz stability; inverse problem},
language = {eng},
number = {3},
pages = {525-554},
publisher = {EDP-Sciences},
title = {Lipschitz stability in the determination of the principal part of a parabolic equation},
url = {http://eudml.org/doc/245358},
volume = {15},
year = {2009},
}
TY - JOUR
AU - Yuan, Ganghua
AU - Yamamoto, Masahiro
TI - Lipschitz stability in the determination of the principal part of a parabolic equation
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2009
PB - EDP-Sciences
VL - 15
IS - 3
SP - 525
EP - 554
AB - Let $y(h)(t,x)$ be one solution to\[ \partial _t y(t,x) - \sum _{i, j=1}^{n}\partial _{j} (a_{ij}(x)\partial _i y(t,x)) = h(t,x), \,0<t<T, \,x\in \Omega \]with a non-homogeneous term $h$, and $y\vert _{(0,T)\times \partial \Omega } = 0$, where $\Omega \subset \mathbb {R}^n$ is a bounded domain. We discuss an inverse problem of determining $n(n+1)/2$ unknown functions $a_{ij}$ by $\lbrace \partial _{\nu }y(h_{\ell })\vert _{(0,T)\times \Gamma _0}$, $y(h_{\ell })(\theta ,\cdot )\rbrace _{1\le \ell \le \ell _0}$ after selecting input sources $h_1, ..., h_{\ell _0}$ suitably, where $\Gamma _0$ is an arbitrary subboundary, $\partial _{\nu }$ denotes the normal derivative, $0 < \theta < T$ and $\ell _0 \in \mathbb {N}$. In the case of $\ell _0 = (n+1)^2n/2$, we prove the Lipschitz stability in the inverse problem if we choose $(h_1, ..., h_{\ell _0})$ from a set ${\mathcal {H}} \subset \lbrace C_0^{\infty } ((0,T)\times \omega )\rbrace ^{\ell _0}$ with an arbitrarily fixed subdomain $\omega \subset \Omega $. Moreover we can take $\ell _0 = (n+3)n/2$ by making special choices for $h_{\ell }$, $1 \le \ell \le \ell _0$. The proof is based on a Carleman estimate.
LA - eng
KW - inverse parabolic problem; Carleman estimate; Lipschitz stability; parabolic equation; Lipshitz stability; inverse problem
UR - http://eudml.org/doc/245358
ER -
References
top- [1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
- [2] K.A. Ames and B. Straughan, Non-standard and Improperly Posed Problems. Academic Press, San Diego (1997).
- [3] L. Baudouin and J.-P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Probl. 18 (2002) 1537–1554. Zbl1023.35091MR1955903
- [4] M. Bellassoued, Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation. Inverse Probl. 20 (2004) 1033–1052. Zbl1061.35162MR2087978
- [5] M. Bellassoued and M. Yamamoto, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation. J. Math. Pures Appl. 85 (2006) 193–224. Zbl1091.35112MR2199012
- [6] H. Brezis, Analyse Fonctionnelle. Masson, Paris (1983). Zbl0511.46001MR697382
- [7] A.L. Bukhgeim, Introduction to the Theory of Inverse Probl. VSP, Utrecht (2000). Zbl0653.35001
- [8] A.L. Bukhgeim and M.V. Klibanov, Global uniqueness of a class of multidimensional inverse problems. Soviet Math. Dokl. 24 (1981) 244–247. Zbl0497.35082
- [9] D. Chae, O.Yu. Imanuvilov and S.M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dyn. Contr. Syst. 2 (1996) 449–483. Zbl0946.93007MR1420354
- [10] J. Cheng and M. Yamamoto, One new strategy for a priori choice of regularizing parameters in Tikhonov’s regularization. Inverse Probl. 16 (2000) L31–L38. Zbl0957.65052MR1776470
- [11] P.G. Danilaev, Coefficient Inverse Problems for Parabolic Type Equations and Their Application. VSP, Utrecht (2001).
- [12] A. Elayyan and V. Isakov, On uniqueness of recovery of the discontinuous conductivity coefficient of a parabolic equation. SIAM J. Math. Anal. 28 (1997) 49–59. Zbl0870.35124MR1427727
- [13] M.M. Eller and V. Isakov, Carleman estimates with two large parameters and applications. Contemp. Math. 268 (2000) 117–136. Zbl0973.35042MR1804792
- [14] C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Royal Soc. Edinburgh 125A (1995) 31–61. Zbl0818.93032MR1318622
- [15] A.V. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations, in Lecture Notes Series 34, Seoul National University, Seoul, South Korea (1996). Zbl0862.49004MR1406566
- [16] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (2001). Zbl1042.35002MR1814364
- [17] R. Glowinski and J.L. Lions, Exact and approximate controllability for distributed parameter systems. Acta Numer. 3 (1994) 269–378. Zbl0838.93013MR1288099
- [18] L. Hörmander, Linear Partial Differential Operators. Springer-Verlag, Berlin (1963). Zbl0108.09301MR404822
- [19] O.Yu. Imanuvilov, Controllability of parabolic equations. Sb. Math. 186 (1995) 879–900. Zbl0845.35040MR1349016
- [20] O.Yu. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate. Inverse Probl. 14 (1998) 1229–1245. Zbl0992.35110MR1654631
- [21] O.Yu. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Probl. 17 (2001) 717–728. Zbl0983.35151MR1861478
- [22] O.Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, in Control of Nonlinear Distributed Parameter Systems, Marcel Dekker, New York (2001) 113–137. Zbl0977.93041MR1817179
- [23] O.Yu. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with a single measurement. Inverse Probl. 19 (2003) 151–171. Zbl1020.35117MR1964256
- [24] O.Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. RIMS Kyoto Univ. 39 (2003) 227–274. Zbl1065.35079MR1987865
- [25] V. Isakov, Inverse Problems for Partial Differential Equations. Springer-Verlag, Berlin (1998), (2005). Zbl0908.35134MR1482521
- [26] V. Isakov and S. Kindermann, Identification of the diffusion coefficient in a one-dimensional parabolic equation. Inverse Probl. 16 (2000) 665–680. Zbl0962.35188MR1766227
- [27] M. Ivanchov, Inverse Problems for Equations of Parabolic Type. VNTL Publishers, Lviv, Ukraine (2003). Zbl1147.35110MR2406459
- [28] A. Khaĭdarov, Carleman estimates and inverse problems for second order hyperbolic equations. Math. USSR Sbornik 58 (1987) 267–277. Zbl0656.35146MR854975
- [29] M.V. Klibanov, Inverse problems in the “large” and Carleman bounds. Diff. Equ. 20 (1984) 755–760. Zbl0573.35083
- [30] M.V. Klibanov, Inverse problems and Carleman estimates. Inverse Probl. 8 (1992) 575–596. Zbl0755.35151MR1178231
- [31] M.V. Klibanov, Estimates of initial conditions of parabolic equations and inequalities via lateral Cauchy data. Inverse Probl. 22 (2006) 495–514. Zbl1094.35139MR2216411
- [32] M.V. Klibanov and A.A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. VSP, Utrecht (2004). Zbl1069.65106MR2126149
- [33] M.V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an accoustic equation. Appl. Anal. 85 (2006) 515–538. Zbl1274.35413MR2213073
- [34] M.M. Lavrent’ev, V.G. Romanov and Shishatskiĭ, Ill-posed Problems of Mathematical Physics and Analysis. American Mathematical Society Providence, Rhode Island (1986). Zbl0593.35003
- [35] J.L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Springer-Verlag, Berlin (1972). Zbl0223.35039
- [36] L.E. Payne, Improperly Posed Problems in Partial Differential Equations. SIAM, Philadelphia (1975). Zbl0302.35003MR463736
- [37] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). Zbl0516.47023MR710486
- [38] J.C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Diff. Eq. 66 (1987) 118–139. Zbl0631.35044MR871574
- [39] E.J.P.G. Schmidt and N. Weck, On the boundary behavior of solutions to elliptic and parabolic equations – with applications to boundary control for parabolic equations. SIAM J. Contr. Opt. 16 (1978) 593–598. Zbl0388.93027MR497464
- [40] M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl. 78 (1999) 65–98. Zbl0923.35200MR1671221
- [41] M. Yamamoto and J. Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient. Inverse Probl. 17 (2001) 1181–1202. Zbl0987.35166MR1861508
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.