On the modeling of the transport of particles in turbulent flows

Thierry Goudon; Frédéric Poupaud

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2004)

  • Volume: 38, Issue: 4, page 673-690
  • ISSN: 0764-583X

Abstract

top
We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.

How to cite

top

Goudon, Thierry, and Poupaud, Frédéric. "On the modeling of the transport of particles in turbulent flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 38.4 (2004): 673-690. <http://eudml.org/doc/245362>.

@article{Goudon2004,
abstract = {We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.},
author = {Goudon, Thierry, Poupaud, Frédéric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {fluid-particles interaction; hydrodynamic limits; turbulence effects; convection-diffusion effective equation; Vlasov-Fokker-Planck equation},
language = {eng},
number = {4},
pages = {673-690},
publisher = {EDP-Sciences},
title = {On the modeling of the transport of particles in turbulent flows},
url = {http://eudml.org/doc/245362},
volume = {38},
year = {2004},
}

TY - JOUR
AU - Goudon, Thierry
AU - Poupaud, Frédéric
TI - On the modeling of the transport of particles in turbulent flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2004
PB - EDP-Sciences
VL - 38
IS - 4
SP - 673
EP - 690
AB - We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
LA - eng
KW - fluid-particles interaction; hydrodynamic limits; turbulence effects; convection-diffusion effective equation; Vlasov-Fokker-Planck equation
UR - http://eudml.org/doc/245362
ER -

References

top
  1. [1] P. Berthonnaud, Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés. C. R. Acad. Sci. 331 (2000) 651–654. Zbl0965.35136
  2. [2] M. Brassart, Limite semi-classique de transformées de Wigner dans des milieux périodiques ou aléatoires. Thèse Université de Nice-Sophia Antipolis (Novembre 2002). 
  3. [3] J.R. Brock and G.M. Hidy, The dynamics of aerocolloidal systems. Pergamon Press (1970). 
  4. [4] R. Caflisch and G. Papanicolaou, Dynamic theory of suspensions with Brownian effects. SIAM J. Appl. Math. 43 (1983) 885–906. Zbl0543.76133
  5. [5] J.F. Clouet and K. Domelevo, Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow. Math. Models Methods Appl. Sci. 7 (1997) 239–263. Zbl0868.60054
  6. [6] L. Desvillettes, About the modeling of complex flows by gas-particles methods, Proceedings of the workshop “Trends in Numerical and Physical Modeling for Industrial Multiphase Flows”, Cargèse, France (2000). 
  7. [7] K. Domelevo and M.-H. Vignal, Limites visqueuses pour des systèmes de type Fokker-Planck-Burgers unidimensionnels. C. R. Acad. Sci. 332 (2001) 863–868. Zbl1067.76090
  8. [8] K. Domelevo and P. Villedieu, Work in preparation. Personal communication. 
  9. [9] S. Gavrilyuck and V. Teshukhov, Kinetic model for the motion of compressible bubbles in a perfect fluid. Eur. J. Mech. B/Fluids 21 (2002) 469–491. Zbl1051.76620
  10. [10] F. Golse, in From kinetic to macroscopic models in Kinetic equations and asymptotic theory, B. Perthame and L. Desvillettes Eds., Gauthier-Villars, Ser. Appl. Math. 4 (2000) 41–121. 
  11. [11] T. Goudon, Asymptotic problems for a kinetic model of two-phase flow. Proc. Royal Soc. Edimburgh 131 (2001) 1371–1384. Zbl0992.35017
  12. [12] T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodymamic limit for the Vlasov-Navier-Stokes system: Light particles regime. Preprint. Zbl1085.35117
  13. [13] T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodymamic limit for the Vlasov-Navier-Stokes system: Fine particles regime. Preprint. Zbl1085.35117
  14. [14] K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Ind. Appl. Math. 15 (1998) 51–74. Zbl1306.76052
  15. [15] H. Herrero, B. Lucquin-Desreux and B. Perthame, On the motion of dispersed balls in a potential flow: a kinetic description of the added mass effect. SIAM J. Appl. Math. 60 (1999) 61–83. Zbl0964.76085
  16. [16] P.-E. Jabin, Large time concentrations for solutions to kinetic equations with energy dissipation. Comm. Partial Differential Equations 25 (2000) 541–557. Zbl0965.35014
  17. [17] P.-E. Jabin, Macroscopic limit of Vlasov type equations with friction. Ann. IHP Anal. Non Linéaire 17 (2000) 651–672. Zbl0965.35013
  18. [18] P.-E. Jabin and B. Perthame, in Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid in Modeling in applied sciences, a kinetic theory approach, N. Bellomo and M. Pulvirenti Eds., Birkhäuser (2000) 111–147. Zbl0957.76087
  19. [19] P. Kramer and A. Majda, Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena. Physics Reports 314 (1999) 237–574. 
  20. [20] R. Kubo, Stochastic Liouville equations. J. Math. Phys. 4 (1963) 174–183. Zbl0135.45102
  21. [21] G. Loeper and A. Vasseur, Electric turbulence in a plasma subject to a strong magnetic field. Preprint. Zbl1080.35153MR2096317
  22. [22] P.J. O’Rourke, Statistical properties and numerical implementation of a model for droplets dispersion in a turbulent gas. J. Comp. Phys. 83 (1989) 345–360. Zbl0673.76065
  23. [23] F. Poupaud and A. Vasseur, Classical and quantum transport in random media. J. Math. Pures Appl. 82 (2003) 711–748. Zbl1035.82037
  24. [24] G. Russo and P. Smereka, Kinetic theory for bubbly flows I, II. SIAM J. Appl. Math. 56 (1996) 327–371. Zbl0857.76090
  25. [25] C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid mechanics, S. Friedlander and D. Serre Eds., North-Holland (2002). Zbl1170.82369MR1942465
  26. [26] F.A. Williams, Combustion theory. Benjamin Cummings Publ., 2nd edn. (1985). 
  27. [27] L.I. Zaichik, A statistical model of particle transport and heat transfer in turbulent shear flows. Phys. Fluids 11 (1999) 1521–1534. Zbl1147.76544

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.