On the modeling of the transport of particles in turbulent flows
Thierry Goudon; Frédéric Poupaud
- Volume: 38, Issue: 4, page 673-690
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topGoudon, Thierry, and Poupaud, Frédéric. "On the modeling of the transport of particles in turbulent flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 38.4 (2004): 673-690. <http://eudml.org/doc/245362>.
@article{Goudon2004,
abstract = {We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.},
author = {Goudon, Thierry, Poupaud, Frédéric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {fluid-particles interaction; hydrodynamic limits; turbulence effects; convection-diffusion effective equation; Vlasov-Fokker-Planck equation},
language = {eng},
number = {4},
pages = {673-690},
publisher = {EDP-Sciences},
title = {On the modeling of the transport of particles in turbulent flows},
url = {http://eudml.org/doc/245362},
volume = {38},
year = {2004},
}
TY - JOUR
AU - Goudon, Thierry
AU - Poupaud, Frédéric
TI - On the modeling of the transport of particles in turbulent flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2004
PB - EDP-Sciences
VL - 38
IS - 4
SP - 673
EP - 690
AB - We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
LA - eng
KW - fluid-particles interaction; hydrodynamic limits; turbulence effects; convection-diffusion effective equation; Vlasov-Fokker-Planck equation
UR - http://eudml.org/doc/245362
ER -
References
top- [1] P. Berthonnaud, Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés. C. R. Acad. Sci. 331 (2000) 651–654. Zbl0965.35136
- [2] M. Brassart, Limite semi-classique de transformées de Wigner dans des milieux périodiques ou aléatoires. Thèse Université de Nice-Sophia Antipolis (Novembre 2002).
- [3] J.R. Brock and G.M. Hidy, The dynamics of aerocolloidal systems. Pergamon Press (1970).
- [4] R. Caflisch and G. Papanicolaou, Dynamic theory of suspensions with Brownian effects. SIAM J. Appl. Math. 43 (1983) 885–906. Zbl0543.76133
- [5] J.F. Clouet and K. Domelevo, Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow. Math. Models Methods Appl. Sci. 7 (1997) 239–263. Zbl0868.60054
- [6] L. Desvillettes, About the modeling of complex flows by gas-particles methods, Proceedings of the workshop “Trends in Numerical and Physical Modeling for Industrial Multiphase Flows”, Cargèse, France (2000).
- [7] K. Domelevo and M.-H. Vignal, Limites visqueuses pour des systèmes de type Fokker-Planck-Burgers unidimensionnels. C. R. Acad. Sci. 332 (2001) 863–868. Zbl1067.76090
- [8] K. Domelevo and P. Villedieu, Work in preparation. Personal communication.
- [9] S. Gavrilyuck and V. Teshukhov, Kinetic model for the motion of compressible bubbles in a perfect fluid. Eur. J. Mech. B/Fluids 21 (2002) 469–491. Zbl1051.76620
- [10] F. Golse, in From kinetic to macroscopic models in Kinetic equations and asymptotic theory, B. Perthame and L. Desvillettes Eds., Gauthier-Villars, Ser. Appl. Math. 4 (2000) 41–121.
- [11] T. Goudon, Asymptotic problems for a kinetic model of two-phase flow. Proc. Royal Soc. Edimburgh 131 (2001) 1371–1384. Zbl0992.35017
- [12] T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodymamic limit for the Vlasov-Navier-Stokes system: Light particles regime. Preprint. Zbl1085.35117
- [13] T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodymamic limit for the Vlasov-Navier-Stokes system: Fine particles regime. Preprint. Zbl1085.35117
- [14] K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Ind. Appl. Math. 15 (1998) 51–74. Zbl1306.76052
- [15] H. Herrero, B. Lucquin-Desreux and B. Perthame, On the motion of dispersed balls in a potential flow: a kinetic description of the added mass effect. SIAM J. Appl. Math. 60 (1999) 61–83. Zbl0964.76085
- [16] P.-E. Jabin, Large time concentrations for solutions to kinetic equations with energy dissipation. Comm. Partial Differential Equations 25 (2000) 541–557. Zbl0965.35014
- [17] P.-E. Jabin, Macroscopic limit of Vlasov type equations with friction. Ann. IHP Anal. Non Linéaire 17 (2000) 651–672. Zbl0965.35013
- [18] P.-E. Jabin and B. Perthame, in Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid in Modeling in applied sciences, a kinetic theory approach, N. Bellomo and M. Pulvirenti Eds., Birkhäuser (2000) 111–147. Zbl0957.76087
- [19] P. Kramer and A. Majda, Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena. Physics Reports 314 (1999) 237–574.
- [20] R. Kubo, Stochastic Liouville equations. J. Math. Phys. 4 (1963) 174–183. Zbl0135.45102
- [21] G. Loeper and A. Vasseur, Electric turbulence in a plasma subject to a strong magnetic field. Preprint. Zbl1080.35153MR2096317
- [22] P.J. O’Rourke, Statistical properties and numerical implementation of a model for droplets dispersion in a turbulent gas. J. Comp. Phys. 83 (1989) 345–360. Zbl0673.76065
- [23] F. Poupaud and A. Vasseur, Classical and quantum transport in random media. J. Math. Pures Appl. 82 (2003) 711–748. Zbl1035.82037
- [24] G. Russo and P. Smereka, Kinetic theory for bubbly flows I, II. SIAM J. Appl. Math. 56 (1996) 327–371. Zbl0857.76090
- [25] C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid mechanics, S. Friedlander and D. Serre Eds., North-Holland (2002). Zbl1170.82369MR1942465
- [26] F.A. Williams, Combustion theory. Benjamin Cummings Publ., 2nd edn. (1985).
- [27] L.I. Zaichik, A statistical model of particle transport and heat transfer in turbulent shear flows. Phys. Fluids 11 (1999) 1521–1534. Zbl1147.76544
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.