On a complete set of operations for factorizing codes
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2006)
- Volume: 40, Issue: 1, page 29-52
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topFelice, Clelia De. "On a complete set of operations for factorizing codes." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 40.1 (2006): 29-52. <http://eudml.org/doc/245420>.
@article{Felice2006,
abstract = {It is known that the class of factorizing codes, i.e., codes satisfying the factorization conjecture formulated by Schützenberger, is closed under two operations: the classical composition of codes and substitution of codes. A natural question which arises is whether a finite set $\{\mathcal \{O\}\}$ of operations exists such that each factorizing code can be obtained by using the operations in $\{\mathcal \{O\}\}$ and starting with prefix or suffix codes. $\{\mathcal \{O\}\}$ is named here a complete set of operations (for factorizing codes). We show that composition and substitution are not enough in order to obtain a complete set. Indeed, we exhibit a factorizing code over a two-letter alphabet $A = \lbrace a,b\rbrace $, precisely a $3-$code, which cannot be obtained by decomposition or substitution.},
author = {Felice, Clelia De},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {variable length codes; formal languages; factorizations of cyclic groups; free monoid generated by a finite alphabet},
language = {eng},
number = {1},
pages = {29-52},
publisher = {EDP-Sciences},
title = {On a complete set of operations for factorizing codes},
url = {http://eudml.org/doc/245420},
volume = {40},
year = {2006},
}
TY - JOUR
AU - Felice, Clelia De
TI - On a complete set of operations for factorizing codes
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2006
PB - EDP-Sciences
VL - 40
IS - 1
SP - 29
EP - 52
AB - It is known that the class of factorizing codes, i.e., codes satisfying the factorization conjecture formulated by Schützenberger, is closed under two operations: the classical composition of codes and substitution of codes. A natural question which arises is whether a finite set ${\mathcal {O}}$ of operations exists such that each factorizing code can be obtained by using the operations in ${\mathcal {O}}$ and starting with prefix or suffix codes. ${\mathcal {O}}$ is named here a complete set of operations (for factorizing codes). We show that composition and substitution are not enough in order to obtain a complete set. Indeed, we exhibit a factorizing code over a two-letter alphabet $A = \lbrace a,b\rbrace $, precisely a $3-$code, which cannot be obtained by decomposition or substitution.
LA - eng
KW - variable length codes; formal languages; factorizations of cyclic groups; free monoid generated by a finite alphabet
UR - http://eudml.org/doc/245420
ER -
References
top- [1] M. Anselmo, A Non-Ambiguous Decomposition of Regular Languages and Factorizing Codes, in Proc. DLT’99, G. Rozenberg, W. Thomas Eds. World Scientific (2000) 141–152. Zbl0996.68089
- [2] M. Anselmo, A Non-Ambiguous Decomposition of Regular Languages and Factorizing Codes. Discrete Appl. Math. 126 (2003) 129–165. Zbl1012.68100
- [3] J. Berstel and D. Perrin, Theory of Codes. Academic Press, New York (1985). Zbl0587.68066MR797069
- [4] J. Berstel and D. Perrin, Trends in the Theory of Codes. Bull. EATCS 29 (1986) 84–95. Zbl1022.94506
- [5] J. Berstel and C. Reutenauer, Rational Series and Their Languages. EATCS Monogr. Theoret. Comput. Sci. 12 (1988). Zbl0668.68005MR971022
- [6] J.M. Boë, Une famille remarquable de codes indécomposables, in Proc. Icalp 78. Lect. Notes Comput. Sci. 62 (1978) 105–112. Zbl0402.94036
- [7] J.M. Boë, Sur les codes factorisants, in Théorie des Codes, Actes de la 7 École de Printemps d’Informatique Théorique, edited by D. Perrin. LITP and ENSTA, Paris (1980) 1–8.
- [8] V. Bruyère and C. De Felice, Synchronization and decomposability for a family of codes. Intern. J. Algebra Comput. 4 (1992) 367–393. Zbl0763.94004
- [9] V. Bruyère and C. De Felice, Synchronization and decomposability for a family of codes: Part 2. Discrete Math. 140 (1995) 47–77. Zbl0842.94009
- [10] V. Bruyère and M. Latteux, Variable-Length Maximal Codes, in Proc. Icalp 96. Lect. Notes Comput. Sci. 1099 (1996) 24–47. Zbl1046.94511
- [11] M.G. Castelli, D. Guaiana and S. Mantaci, Indecomposable prefix codes and prime trees, in Proc. DLT 97 edited by S. Bozapadilis-Aristotel (1997).
- [12] Y. Césari, Sur un algorithme donnant les codes bipréfixes finis. Math. Syst. Theory 6 (1972) 221–225. Zbl0241.94015
- [13] Y. Césari, Sur l’application du théorème de Suschkevitch à l’étude des codes rationnels complets, in Proc. Icalp 74. Lect. Notes Comput. Sci. (1974) 342–350. Zbl0338.94004
- [14] C. De Felice, Construction of a family of finite maximal codes. Theoret. Comput. Sci. 63 (1989) 157–184. Zbl0667.68079
- [15] C. De Felice, A partial result about the factorization conjecture for finite variable-length codes. Discrete Math. 122 (1993) 137–152. Zbl0798.68084
- [16] C. De Felice, An application of Hajós factorizations to variable-length codes. Theoret. Comput. Sci. 164 (1996) 223–252. Zbl0864.94014
- [17] C. De Felice, Factorizing Codes and Schützenberger Conjectures, in Proc. MFCS 2000. Lect. Notes Comput. Sci. 1893 (2000) 295–303. Zbl0996.68087
- [18] C. De Felice, On some Schützenberger Conjectures. Inform. Comp. 168 (2001) 144–155. Zbl1007.68097
- [19] C. De Felice, An enhanced property of factorizing codes. Theor. Comput. Sci. 340 (2005) 240–256. Zbl1079.68031
- [20] C. De Felice and A. Restivo, Some results on finite maximal codes. RAIRO-Inform. Theor. Appl. 19 (1985) 383–403. Zbl0578.68062
- [21] C. De Felice and C. Reutenauer, Solution partielle de la conjecture de factorisation des codes. C.R. Acad. Sci. Paris 302 (1986) 169–170. Zbl0616.68066
- [22] D. Derencourt, A three-word code which is not prefix-suffix composed. Theor. Comput. Sci. 163 (1996) 145–160. Zbl0874.68169
- [23] L. Fuchs, Abelian groups. Pergamon Press, New York (1960). Zbl0100.02803MR111783
- [24] G. Hajós, Sur la factorisation des groupes abéliens. Casopis Pest. Mat. Fys. 74 (1950) 157–162. Zbl0039.01901
- [25] M. Krasner and B. Ranulac, Sur une propriété des polynômes de la division du cercle. C.R. Acad. Sci. Paris 240 (1937) 397–399. Zbl63.0044.03JFM63.0044.03
- [26] N.H. Lam, A note on codes having no finite completions. Inform. Proc. Lett. 55 (1995) 185–188. Zbl1023.68572
- [27] N.H. Lam, Hajós factorizations and completion of codes. Theor. Comput. Sci. 182 (1997) 245–256. Zbl1053.20531
- [28] J. Neraud and C. Selmi, Locally complete sets and finite decomposable codes. Theor. Comput. Sci. 273 (2002) 185–196. Zbl0996.68055
- [29] M. Nivat, Éléments de la théorie générale des codes, in Automata Theory, edited by E. Caianiello. Academic Press, New York (1966) 278–294. Zbl0208.45101
- [30] D. Perrin, Codes asynchrones. Bull. Soc. Math. France 105 (1977) 385–404. Zbl0391.94017
- [31] D. Perrin, Polynôme d’un code, in Théorie des Codes, Actes de la 7 École de Printemps d’Informatique Théorique, edited by D. Perrin. LITP and ENSTA, Paris (1980) 169–176.
- [32] D. Perrin and M.P. Schützenberger, Un problème élémentaire de la théorie de l’information, Théorie de l’Information, Colloques Internat. CNRS, Cachan 276 (1977) 249–260. Zbl0483.94028
- [33] A. Restivo, On codes having no finite completions. Discrete Math. 17 (1977) 309–316. Zbl0357.94011
- [34] A. Restivo, Codes and local constraints. Theor. Comput. Sci. 72 (1990) 55–64. Zbl0693.68047
- [35] A. Restivo, S. Salemi and T. Sportelli, Completing codes. RAIRO-Inf. Theor. Appl. 23 (1989) 135–147. Zbl0669.94012
- [36] A. Restivo and P.V. Silva, On the lattice of prefix codes. Theor. Comput. Sci. 289 (2002) 755–782. Zbl1061.94038
- [37] C. Reutenauer, Sulla fattorizzazione dei codici. Ricerche di Mat. XXXII (1983) 115–130. Zbl0543.68063
- [38] C. Reutenauer, Non commutative factorization of variable-length codes. J. Pure Appl. Algebra 36 (1985) 167–186. Zbl0629.68079
- [39] A.D. Sands, On the factorisation of finite abelian groups. Acta Math. Acad. Sci. Hungaricae 8 (1957) 65–86. Zbl0079.03303
- [40] M.P. Schützenberger, Une théorie algébrique du codage, Séminaire Dubreil-Pisot 1955–56, exposé No. 15 (1955), 24 p.
- [41] M. Vincent, Construction de codes indécomposables. RAIRO-Inf. Theor. Appl. 19 (1985) 165–178. Zbl0567.68046
- [42] L. Zhang and C.K. Gu, Two classes of factorizing codes – -codes and -codes, in Words, Languages and Combinatorics II, edited by M. Ito and H. Jürgensen. World Scientific (1994) 477–483. Zbl0873.94011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.