Green’s function pointwise estimates for the modified Lax–Friedrichs scheme
- Volume: 37, Issue: 1, page 1-39
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. Benzoni-Gavage, Stability of semi-discrete shock profiles by means of an Evans function in infinite dimensions. J. Dynam. Differential Equations 14 (2002) 613–674. Zbl1001.35081
- [2] S. Benzoni-Gavage, D. Serre and K. Zumbrun, Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32 (2001) 929–962. Zbl0985.34075
- [3] M. Bultelle, M. Grassin and D. Serre, Unstable Godunov discrete profiles for steady shock waves. SIAM J. Numer. Anal. 35 (1998) 2272–2297. Zbl0929.76083
- [4] C. Chainais-Hillairet and E. Grenier, Numerical boundary layers for hyperbolic systems in 1-D. ESAIM: M2AN 35 (2001) 91–106. Zbl0980.65093
- [5] C. Dafermos, Hyperbolic conservation laws in continuum physics. Springer (2000). Zbl0940.35002MR1763936
- [6] R. A. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51 (1998) 797–855. Zbl0933.35136
- [7] M. Gisclon and D. Serre, Étude des conditions aux limites pour un système strictement hyberbolique via l’approximation parabolique. C.R. Acad. Sci. Paris Sér. I Math. 319 (1994) 377–382. Zbl0808.35075
- [8] M. Gisclon and D. Serre, Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. RAIRO Modél. Math. Anal. Numér. 31 (1997) 359–380. Zbl0873.65087
- [9] P. Godillon, Necessary condition of spectral stability for a stationary Lax-Wendroff shock profile. Preprint UMPA, ENS Lyon, 295 (2001).
- [10] P. Godillon, Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation. Phys. D 148 (2001) 289–316. Zbl1076.76033
- [11] E. Grenier and O. Guès, Boundary layers for viscous perturbations of non-characteristic quasilinear hyperbolic problems. J. Differential Equations (1998). Zbl0896.35078MR1604888
- [12] E. Grenier and F. Rousset, Stability of one-dimensional boundary layers by using Green’s functions. Comm. Pure Appl. Math. 54 (2001) 1343–1385. Zbl1026.35015
- [13] G. Jennings, Discrete shocks. Comm. Pure Appl. Math. 27 (1974) 25–37. Zbl0304.65063
- [14] C.K.R.T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system. Trans. Amer. Math. Soc. 286 (1984) 431–469. Zbl0567.35044
- [15] T. Kato, Perturbation theory for linear operators. Springer-Verlag (1985). Zbl0531.47014
- [16] T.-P. Liu, On the viscosity criterion for hyperbolic conservation laws, in Viscous profiles and numerical methods for shock waves (Raleigh, NC, 1990), pp. 105–114. SIAM, Philadelphia, PA (1991). Zbl0729.76637
- [17] T.-P. Liu and Z. Xin, Overcompressive shock waves, in Nonlinear evolution equations that change type. Springer-Verlag, New York, IMA Vol. Math. Appl. 27 (1990) 139–145. Zbl0731.35063
- [18] T.-P. Liu and S.-H. Yu, Continuum shock profiles for discrete conservation laws. I. Construction. Comm. Pure Appl. Math. 52 (1999) 85–127. Zbl0933.35137
- [19] T.-P. Liu and S.-H. Yu, Continuum shock profiles for discrete conservation laws. II. Stability. Comm. Pure Appl. Math. 52 (1999) 1047–1073. Zbl0965.35095
- [20] A. Majda and J. Ralston, Discrete shock profiles for systems of conservation laws. Comm. Pure Appl. Math. 32 (1979) 445–482. Zbl0388.35047
- [21] C. Mascia and K. Zumbrun, Pointwise green’s function bounds and stability of relaxation shocks. Indiana Univ. Math. J. 51 (2002) 773–904. Zbl1036.35135
- [22] D. Michelson, Discrete shocks for difference approximations to systems of conservation laws. Adv. in Appl. Math. 5 (1984) 433–469. Zbl0575.65087
- [23] S. Schecter and M. Shearer, Transversality for undercompressive shocks in Riemann problems, in Viscous profiles and numerical methods for shock waves (Raleigh, NC, 1990), pp. 142–154. SIAM, Philadelphia, PA (1991). Zbl0752.35035
- [24] D. Serre, Remarks about the discrete profiles of shock waves. Mat. Contemp. 11 (1996) 153–170. Fourth Workshop on Partial Differential Equations, Part II (Rio de Janeiro, 1995). Zbl0864.35074
- [25] D. Serre, Discrete shock profiles and their stability, in Hyperbolic problems: theory, numerics, applications, Vol. II (Zürich, 1998), pp. 843–853. Birkhäuser, Basel (1999). Zbl0928.35102
- [26] D. Serre, Systems of conservation laws. 1. Cambridge University Press, Cambridge (1999). Hyperbolicity, entropies, shock waves. Translated from the 1996 French original by I.N. Sneddon. Zbl0930.35001MR1707279
- [27] K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47 (1998) 741–871. Zbl0928.35018
- [28] K. Zumbrun and D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48 (1999) 937–992. Zbl0944.76027