Newton and conjugate gradient for harmonic maps from the disc into the sphere

Morgan Pierre

ESAIM: Control, Optimisation and Calculus of Variations (2004)

  • Volume: 10, Issue: 1, page 142-167
  • ISSN: 1292-8119

Abstract

top
We compute numerically the minimizers of the Dirichlet energy E ( u ) = 1 2 B 2 | u | 2 d x among maps u : B 2 S 2 from the unit disc into the unit sphere that satisfy a boundary condition and a degree condition. We use a Sobolev gradient algorithm for the minimization and we prove that its continuous version preserves the degree. For the discretization of the problem we use continuous P 1 finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the discrete version of the algorithm (which is a preconditioned projected gradient). In order to improve the convergence, we generalize to manifolds the classical Newton and conjugate gradient algorithms. We give a proof of the quadratic convergence of the Newton algorithm for manifolds in a general setting.

How to cite

top

Pierre, Morgan. "Newton and conjugate gradient for harmonic maps from the disc into the sphere." ESAIM: Control, Optimisation and Calculus of Variations 10.1 (2004): 142-167. <http://eudml.org/doc/245455>.

@article{Pierre2004,
abstract = {We compute numerically the minimizers of the Dirichlet energy\[E(u)=\frac\{1\}\{2\}\int \_\{B^2\}|\nabla u|^2 \{\rm d\}x\]among maps $u:B^2\rightarrow S^2$ from the unit disc into the unit sphere that satisfy a boundary condition and a degree condition. We use a Sobolev gradient algorithm for the minimization and we prove that its continuous version preserves the degree. For the discretization of the problem we use continuous $P_1$ finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the discrete version of the algorithm (which is a preconditioned projected gradient). In order to improve the convergence, we generalize to manifolds the classical Newton and conjugate gradient algorithms. We give a proof of the quadratic convergence of the Newton algorithm for manifolds in a general setting.},
author = {Pierre, Morgan},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {harmonic maps; finite elements; mesh-refinement; Sobolev gradient; Newton algorithm; conjugate gradient; Harmonic maps; preconditioning; convergence},
language = {eng},
number = {1},
pages = {142-167},
publisher = {EDP-Sciences},
title = {Newton and conjugate gradient for harmonic maps from the disc into the sphere},
url = {http://eudml.org/doc/245455},
volume = {10},
year = {2004},
}

TY - JOUR
AU - Pierre, Morgan
TI - Newton and conjugate gradient for harmonic maps from the disc into the sphere
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2004
PB - EDP-Sciences
VL - 10
IS - 1
SP - 142
EP - 167
AB - We compute numerically the minimizers of the Dirichlet energy\[E(u)=\frac{1}{2}\int _{B^2}|\nabla u|^2 {\rm d}x\]among maps $u:B^2\rightarrow S^2$ from the unit disc into the unit sphere that satisfy a boundary condition and a degree condition. We use a Sobolev gradient algorithm for the minimization and we prove that its continuous version preserves the degree. For the discretization of the problem we use continuous $P_1$ finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the discrete version of the algorithm (which is a preconditioned projected gradient). In order to improve the convergence, we generalize to manifolds the classical Newton and conjugate gradient algorithms. We give a proof of the quadratic convergence of the Newton algorithm for manifolds in a general setting.
LA - eng
KW - harmonic maps; finite elements; mesh-refinement; Sobolev gradient; Newton algorithm; conjugate gradient; Harmonic maps; preconditioning; convergence
UR - http://eudml.org/doc/245455
ER -

References

top
  1. [1] F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708–1726. Zbl0886.35010
  2. [2] F. Alouges and B.D. Coleman, Numerical bifurcation of equilibria of nematic crystals between non-co-axial cylinders. Math. Models Methods Appl. Sci. 11 (2001) 459–473. Zbl1035.76004
  3. [3] D. Braess, Finite elements, in Theory, fast solvers, and applications in solid mechanics. Translated from the 1992 German edition by Larry L. Schumaker. Cambridge University Press, Cambridge, 2nd edn. (2001). Zbl0976.65099MR1827293
  4. [4] H. Brézis, Analyse fonctionnelle. Masson (1996). Zbl0511.46001MR697382
  5. [5] H. Brézis and J.-M. Coron, Large solutions for harmonic maps in two dimensions. Comm. Math. Phys. 92 (1983) 203–215. Zbl0532.58006
  6. [6] K.-C. Chang, W.-Y. Ding and R. Ye, Finite-time blow up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36 (1992) 507–515. Zbl0765.53026
  7. [7] P.G. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation. Masson (1988). Zbl0488.65001
  8. [8] P.-G. De Gennes and J. Prost, The physics of liquid crystals. Clarendon Press, Oxford (1993). 
  9. [9] R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1994) 149–154. Zbl0132.11701
  10. [10] M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations. I. Springer-Verlag, Berlin (1998). Zbl0914.49001MR1645086
  11. [11] M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations. II. Springer-Verlag, Berlin (1998). Zbl0914.49002MR1645082
  12. [12] R.M. Hardt, Singularities of harmonic maps. Bull. Amer. Math. Soc. (N.S.) 34 (1997) 15–34. Zbl0871.58026
  13. [13] E. Hebey, Introduction à l’analyse non linéaire sur les variétés. Diderot Editeur Arts et Sciences (1987). Zbl0918.58001
  14. [14] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une sphère. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 519–524. Zbl0728.35014
  15. [15] F. Hélein, Symétries dans les problèmes variationnels et applications harmoniques. Istituti Editoriali e Poligrafici Internazionali, Pisa-Roma (1998). 
  16. [16] J. Jost, Harmonic mappings betwenn surfaces. Springer-verlag, Lecture Notes in Math. 1062 (1984). Zbl0542.58002MR754769
  17. [17] W.P.A Klingenberg, Riemannian Geometry. Walter de Gruyter (1995). Zbl0911.53022MR1330918
  18. [18] E. Kuwert, Minimizing the energy of maps from a surface into a 2-sphere with prescribed degree and boundary values. Manuscripta Math. 83 (1994) 31–38. Zbl0808.58017
  19. [19] L. Lemaire, Applications harmoniques de surfaces riemanniennes. J. Differ. Geom. 13 (1978) 51–78. Zbl0388.58003
  20. [20] A. Lichnewsky, Une méthode de gradient conjugué sur des variétés : application à certains problèmes de valeurs propres non linéaires. Numer. Funct. Anal. Optim. 1 (1979) 515–560. Zbl0455.49020
  21. [21] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 2. Rev. Mat. Iberoamericana 1 (1985) 45–121. Zbl0704.49006
  22. [22] C.B. Morrey, Multiple integrals in the calculus of variations. Springer, New York (1966). Zbl0142.38701MR202511
  23. [23] J.W. Neuberger, Sobolev gradients and boundary conditions for partial differential equations, in Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), Amer. Math. Soc., Providence, RI. Contemp. Math. 204 (1997) 171–181 Zbl0870.47029
  24. [24] E. Polak, Optimization, Appl. Math. Sci. 124 (1997). Zbl0899.90148
  25. [25] J. Qing, Remark on the Dirichlet problem for harmonic maps from the disc into the 2-sphere. Proc. R. Soc. Edinb. 122A (1992) 63–67. Zbl0769.58014
  26. [26] J. Qing, Boundary regularity of weakly harmonic maps from surfaces. J. Funct. Anal. 114 (1993) 63–67. Zbl0785.53048
  27. [27] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps. J. Dif. Geom. 18 (1983) 253–268. Zbl0547.58020
  28. [28] J.R. Shewchuk, Triangle: engineering a 2d quality mesh generator and delaunay triangulator. http://www-2.cs.cmu.edu/quake/triangle.html. 
  29. [29] J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain. http://www-2.cs.cmu.edu/jrs/jrspapers.html#cg (1994). 
  30. [30] A. Soyeur, The Dirichlet problem for harmonic maps from the disc into the 2-sphere. Proc. R. Soc. Edinb. 113A (1989) 229–234. Zbl0701.58020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.