# Numerical simulation of gluey particles

- Volume: 43, Issue: 1, page 53-80
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topLefebvre, Aline. "Numerical simulation of gluey particles." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 43.1 (2009): 53-80. <http://eudml.org/doc/245470>.

@article{Lefebvre2009,

abstract = {We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe a multi-particle algorithm for the simulation of such systems and present numerical results.},

author = {Lefebvre, Aline},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {fluid/particle systems; fluid/solid interaction; lubrication force; contacts; Stokes fluid; multi-particle algorithm},

language = {eng},

number = {1},

pages = {53-80},

publisher = {EDP-Sciences},

title = {Numerical simulation of gluey particles},

url = {http://eudml.org/doc/245470},

volume = {43},

year = {2009},

}

TY - JOUR

AU - Lefebvre, Aline

TI - Numerical simulation of gluey particles

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 2009

PB - EDP-Sciences

VL - 43

IS - 1

SP - 53

EP - 80

AB - We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe a multi-particle algorithm for the simulation of such systems and present numerical results.

LA - eng

KW - fluid/particle systems; fluid/solid interaction; lubrication force; contacts; Stokes fluid; multi-particle algorithm

UR - http://eudml.org/doc/245470

ER -

## References

top- [1] Y. Achdou, O. Pironneau and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comp. Phys. 147 (1998) 187–218. Zbl0917.76013MR1657773
- [2] Y. Assou, D. Joyeux, A. Azouni and F. Feuillebois, Mesure par interférométrie laser du mouvement d’une particule proche d’une paroi. J. Phys. III 1 (1991) 315–330.
- [3] L. Bocquet and J.-L. Barrat, Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E 49 (1994) 3079–3092.
- [4] J.F. Brady and G. Bossis, Stokesian dynamics. Ann. Rev. Fluid Mech. 20 (1988) 111–157.
- [5] D. Bresh and V. Milisic, High order multi-scale wall-laws, part I: The periodic case. Quat. Appl. Math. (to appear) ArXiv:math/0611083v2.
- [6] R.G. Cox, The motion of suspended particles almost in contact. Int. J. Multiphase Flow 1 (1974) 343–371. Zbl0358.76069
- [7] R.G. Cox and H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface – II – Small gap width, including inertial effects. Chem. Engng. Sci. 22 (1967) 1753–1777.
- [8] S.L. Dance and M.R. Maxey, Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comp. Phys. 189 (2003) 212–238. Zbl1097.76600MR1988148
- [9] B. Desjardin and M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999) 59–71. Zbl0943.35063MR1682663
- [10] A. Einstein, A new method of determining molecular dimensions. Ann. Phys. Leipsig 19 (1906) 289–306. JFM37.0811.01
- [11] A. Einstein, Correction to my work: a new determination of molecular dimensions. Ann. Phys. Leipsig 34 (1911) 591–592. JFM42.0855.04
- [12] E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3 (2003) 419–441. Zbl1039.76071MR2019028
- [13] R. Glowinski, T.-W. Pan, T.I. Heslaand and D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25 (1999) 755–794. Zbl1137.76592
- [14] M. Hillairet, Lack of collision between solid bodies in a 2D constant-density incompressible viscous flow. Comm. Partial Diff. Eq. 32 (2007) 1345–1371. Zbl1221.35279MR2354496
- [15] H.H. Hu, Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow 22 (1996) 335–352. Zbl1135.76442
- [16] A.A. Johnson and T.E. Tezduyar, Simulation of multiple spheres falling in a liquid-filled tube. Comput. Methods Appl. Mech. Engrg. 134 (1996) 351–373. Zbl0895.76046MR1412010
- [17] S. Labbé, J. Laminie and V. Louvet, CSiMoon. Calcul scientifique, méthodologie orientée objet et environnement: de l’analyse mathématique à la programmation. Technical report RT 2001-01, Laboratoire de Mathématiques, Université Paris-Sud, France (2004).
- [18] N. Lecocq, F. Feuillebois, N. Anthore, R. Anthore, F. Bostel and C. Petipas, Precise measurement of particle-wall hydrodynamic interactions at low Reynolds number using laser interferometry. Phys. Fluids A 5 (1993) 3–12.
- [19] N. Lecoq, R. Anthore, B. Cichocki, P. Szymczak and F. Feuillebois, Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech. 513 (2004) 247–264. Zbl1107.76319
- [20] A. Lefebvre, Fluid-Particle simulations with FreeFem++, in ESAIM: Proceedings 18, J.-F. Gerbeau and S. Labbé Eds. (2007) 120–132. Zbl05213260MR2404900
- [21] A. Lefebvre, Simulation numérique d’écoulements fluide/particules. Ph.D. thesis, Université Paris-Sud XI, Orsay, France (Nov. 2007).
- [22] B. Maury, A many-body lubrication model. C.R. Acad. Sci. Paris 325 (1997) 1053–1058. Zbl0898.76019MR1485629
- [23] B. Maury, Direct simulation of 2D fluid-particle flows in biperiodic domains. J. Comp. Phys. 156 (1999) 325–351. Zbl0958.76045MR1727335
- [24] B. Maury, A time-stepping scheme for inelastic collisions. Numer. Math. 102 (2006) 649–679. Zbl1091.70002MR2207284
- [25] B. Maury, A gluey particle model, in ESAIM: Proceedings 18, J.-F. Gerbeau and S. Labbé Eds. (2007) 133–142. Zbl05213261MR2404901
- [26] S. Nasseri, N. Phan-Thien and X.J. Fan, Lubrication approximation in completed double layer boundary element method. Comput. Mech. 26 (2000) 388–397. Zbl0994.76061
- [27] N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski and T.-W. Pan, A new formulations for the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26 (2000) 1509–1524. Zbl1137.76712
- [28] S. Richardson, A model for the boundary condition of a porous material. Part 2. J. Fluid Mech. 49 (1971) 327–336. Zbl0235.76045
- [29] J.A. San Matín, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002) 113–147. Zbl1018.76012MR1870954
- [30] P. Singh, T.I. Hesla and D.D. Joseph, Distributed Lagrange multiplier method for particulate flows with collisions. Int. J. Multiphase Flow 29 (2003) 495–509. Zbl1136.76643
- [31] J.R. Smart and D.T. Leighton, Measurement of the hydrodynamic roughness of non colloidal spheres. Phys. Fluids A 1 (1989) 52.
- [32] D.E. Stewart, Rigid-body dynamics with friction and impact. SIAM Rev. 42 (2000) 3–39. Zbl0962.70010MR1738097
- [33] T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8 (2003) 1499–1532. Zbl1101.35356MR2029294
- [34] T. Takahashi, Existence of strong solutions for the problem of a rigid-fluid system. C.R. Math. Acad. Sci. Paris 336 (2003) 453–458. Zbl1044.35062MR1979363
- [35] G.I. Taylor, A model for the boundary condition of a porous material. Part 1. J. Fluid Mech. 49 (1971) 319–326. Zbl0254.76093
- [36] O.I. Vinogradova and G.E. Yacubov, Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 73 (2006) 045302(R).
- [37] D. Wan and S. Turek, Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method. Int. J. Numer. Meth. Fluids 51 (2006) 531–566. Zbl1145.76406MR2227587

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.