Numerical simulation of gluey particles

Aline Lefebvre

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2009)

  • Volume: 43, Issue: 1, page 53-80
  • ISSN: 0764-583X

Abstract

top
We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe a multi-particle algorithm for the simulation of such systems and present numerical results.

How to cite

top

Lefebvre, Aline. "Numerical simulation of gluey particles." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 43.1 (2009): 53-80. <http://eudml.org/doc/245470>.

@article{Lefebvre2009,
abstract = {We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe a multi-particle algorithm for the simulation of such systems and present numerical results.},
author = {Lefebvre, Aline},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {fluid/particle systems; fluid/solid interaction; lubrication force; contacts; Stokes fluid; multi-particle algorithm},
language = {eng},
number = {1},
pages = {53-80},
publisher = {EDP-Sciences},
title = {Numerical simulation of gluey particles},
url = {http://eudml.org/doc/245470},
volume = {43},
year = {2009},
}

TY - JOUR
AU - Lefebvre, Aline
TI - Numerical simulation of gluey particles
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2009
PB - EDP-Sciences
VL - 43
IS - 1
SP - 53
EP - 80
AB - We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe a multi-particle algorithm for the simulation of such systems and present numerical results.
LA - eng
KW - fluid/particle systems; fluid/solid interaction; lubrication force; contacts; Stokes fluid; multi-particle algorithm
UR - http://eudml.org/doc/245470
ER -

References

top
  1. [1] Y. Achdou, O. Pironneau and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comp. Phys. 147 (1998) 187–218. Zbl0917.76013MR1657773
  2. [2] Y. Assou, D. Joyeux, A. Azouni and F. Feuillebois, Mesure par interférométrie laser du mouvement d’une particule proche d’une paroi. J. Phys. III 1 (1991) 315–330. 
  3. [3] L. Bocquet and J.-L. Barrat, Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E 49 (1994) 3079–3092. 
  4. [4] J.F. Brady and G. Bossis, Stokesian dynamics. Ann. Rev. Fluid Mech. 20 (1988) 111–157. 
  5. [5] D. Bresh and V. Milisic, High order multi-scale wall-laws, part I: The periodic case. Quat. Appl. Math. (to appear) ArXiv:math/0611083v2. 
  6. [6] R.G. Cox, The motion of suspended particles almost in contact. Int. J. Multiphase Flow 1 (1974) 343–371. Zbl0358.76069
  7. [7] R.G. Cox and H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface – II – Small gap width, including inertial effects. Chem. Engng. Sci. 22 (1967) 1753–1777. 
  8. [8] S.L. Dance and M.R. Maxey, Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comp. Phys. 189 (2003) 212–238. Zbl1097.76600MR1988148
  9. [9] B. Desjardin and M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999) 59–71. Zbl0943.35063MR1682663
  10. [10] A. Einstein, A new method of determining molecular dimensions. Ann. Phys. Leipsig 19 (1906) 289–306. JFM37.0811.01
  11. [11] A. Einstein, Correction to my work: a new determination of molecular dimensions. Ann. Phys. Leipsig 34 (1911) 591–592. JFM42.0855.04
  12. [12] E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3 (2003) 419–441. Zbl1039.76071MR2019028
  13. [13] R. Glowinski, T.-W. Pan, T.I. Heslaand and D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25 (1999) 755–794. Zbl1137.76592
  14. [14] M. Hillairet, Lack of collision between solid bodies in a 2D constant-density incompressible viscous flow. Comm. Partial Diff. Eq. 32 (2007) 1345–1371. Zbl1221.35279MR2354496
  15. [15] H.H. Hu, Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow 22 (1996) 335–352. Zbl1135.76442
  16. [16] A.A. Johnson and T.E. Tezduyar, Simulation of multiple spheres falling in a liquid-filled tube. Comput. Methods Appl. Mech. Engrg. 134 (1996) 351–373. Zbl0895.76046MR1412010
  17. [17] S. Labbé, J. Laminie and V. Louvet, CSiMoon. Calcul scientifique, méthodologie orientée objet et environnement: de l’analyse mathématique à la programmation. Technical report RT 2001-01, Laboratoire de Mathématiques, Université Paris-Sud, France (2004). 
  18. [18] N. Lecocq, F. Feuillebois, N. Anthore, R. Anthore, F. Bostel and C. Petipas, Precise measurement of particle-wall hydrodynamic interactions at low Reynolds number using laser interferometry. Phys. Fluids A 5 (1993) 3–12. 
  19. [19] N. Lecoq, R. Anthore, B. Cichocki, P. Szymczak and F. Feuillebois, Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech. 513 (2004) 247–264. Zbl1107.76319
  20. [20] A. Lefebvre, Fluid-Particle simulations with FreeFem++, in ESAIM: Proceedings 18, J.-F. Gerbeau and S. Labbé Eds. (2007) 120–132. Zbl05213260MR2404900
  21. [21] A. Lefebvre, Simulation numérique d’écoulements fluide/particules. Ph.D. thesis, Université Paris-Sud XI, Orsay, France (Nov. 2007). 
  22. [22] B. Maury, A many-body lubrication model. C.R. Acad. Sci. Paris 325 (1997) 1053–1058. Zbl0898.76019MR1485629
  23. [23] B. Maury, Direct simulation of 2D fluid-particle flows in biperiodic domains. J. Comp. Phys. 156 (1999) 325–351. Zbl0958.76045MR1727335
  24. [24] B. Maury, A time-stepping scheme for inelastic collisions. Numer. Math. 102 (2006) 649–679. Zbl1091.70002MR2207284
  25. [25] B. Maury, A gluey particle model, in ESAIM: Proceedings 18, J.-F. Gerbeau and S. Labbé Eds. (2007) 133–142. Zbl05213261MR2404901
  26. [26] S. Nasseri, N. Phan-Thien and X.J. Fan, Lubrication approximation in completed double layer boundary element method. Comput. Mech. 26 (2000) 388–397. Zbl0994.76061
  27. [27] N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski and T.-W. Pan, A new formulations for the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26 (2000) 1509–1524. Zbl1137.76712
  28. [28] S. Richardson, A model for the boundary condition of a porous material. Part 2. J. Fluid Mech. 49 (1971) 327–336. Zbl0235.76045
  29. [29] J.A. San Matín, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002) 113–147. Zbl1018.76012MR1870954
  30. [30] P. Singh, T.I. Hesla and D.D. Joseph, Distributed Lagrange multiplier method for particulate flows with collisions. Int. J. Multiphase Flow 29 (2003) 495–509. Zbl1136.76643
  31. [31] J.R. Smart and D.T. Leighton, Measurement of the hydrodynamic roughness of non colloidal spheres. Phys. Fluids A 1 (1989) 52. 
  32. [32] D.E. Stewart, Rigid-body dynamics with friction and impact. SIAM Rev. 42 (2000) 3–39. Zbl0962.70010MR1738097
  33. [33] T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8 (2003) 1499–1532. Zbl1101.35356MR2029294
  34. [34] T. Takahashi, Existence of strong solutions for the problem of a rigid-fluid system. C.R. Math. Acad. Sci. Paris 336 (2003) 453–458. Zbl1044.35062MR1979363
  35. [35] G.I. Taylor, A model for the boundary condition of a porous material. Part 1. J. Fluid Mech. 49 (1971) 319–326. Zbl0254.76093
  36. [36] O.I. Vinogradova and G.E. Yacubov, Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 73 (2006) 045302(R). 
  37. [37] D. Wan and S. Turek, Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method. Int. J. Numer. Meth. Fluids 51 (2006) 531–566. Zbl1145.76406MR2227587

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.