Invariant tracking
Philippe Martin; Pierre Rouchon; Joachim Rudolph[1]
- [1] Institut fur Regelungs- und Steuerungstheorie, Technische Universität Dresden, Mommsenstr. 13, 01062 Dresden, Germany
ESAIM: Control, Optimisation and Calculus of Variations (2004)
- Volume: 10, Issue: 1, page 1-13
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden and R. Murray, Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136 (1996) 21-99. Zbl0886.70014MR1423003
- [2] F. Bullo and R.M. Murray, Tracking for fully actuated mechanical systems: A geometric framework. Automatica 35 (1999) 17-34. Zbl0941.93014MR1827788
- [3] E. Delaleau and P.S. Pereira da Silva, Filtrations in feedback synthesis: Part I – Systems and feedbacks. Forum Math. 10 (1998) 147-174. Zbl0891.93022
- [4] J. Descusse and C.H. Moog, Dynamic decoupling for right invertible nonlinear systems. Systems Control Lett. 8 (1988) 345-349. Zbl0617.93024MR884884
- [5] F. Fagnani and J. Willems, Representations of symmetric linear dynamical systems. SIAM J. Control Optim. 31 (1993) 1267-1293. Zbl0785.93005MR1234003
- [6] J.W. Grizzle and S.I. Marcus, The structure of nonlinear systems possessing symmetries. IEEE Trans. Automat. Control 30 (1985) 248-258. Zbl0562.93041MR778428
- [7] A. Isidori, Nonlinear Control Systems, 2nd Edition. Springer, New York (1989). Zbl0693.93046MR1015932
- [8] B. Jakubczyk, Symmetries of nonlinear control systems and their symbols, in Canadian Math. Conf. Proceed., Vol. 25 (1998) 183-198. Zbl1126.93352MR1648715
- [9] W.S. Koon and J.E. Marsden, Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction. SIAM J. Control Optim. 35 (1997) 901-929. Zbl0880.70020MR1444343
- [10] J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry. Springer-Verlag, New York (1994). Zbl0811.70002MR1304682
- [11] Ph. Martin, R. Murray and P. Rouchon, Flat systems, in Proc. of the th European Control Conf.. Brussels (1997) 211-264. Plenary lectures and Mini-courses. Zbl1008.93019MR1972795
- [12] H. Nijmeijer, Right-invertibility for a class of nonlinear control systems: A geometric approach. Systems Control Lett. 7 (1986) 125-132. Zbl0622.93027MR836302
- [13] H. Nijmeijer and A.J. van der Schaft, Nonlinear Dynamical Control Systems. Springer-Verlag (1990). Zbl0701.93001MR1047663
- [14] P.J. Olver, Equivalence, Invariants and Symmetry. Cambridge University Press (1995). Zbl0837.58001MR1337276
- [15] P.J. Olver, Classical Invariant Theory. Cambridge University Press (1999). Zbl0971.13004MR1694364
- [16] W. Respondek and H. Nijmeijer, On local right-invertibility of nonlinear control system. Control Theory Adv. Tech. 4 (1988) 325-348. MR964370
- [17] W. Respondek and I.A. Tall, Nonlinearizable single-input control systems do not admit stationary symmetries. Systems Control Lett. 46 (2002) 1-16. Zbl1023.93017MR2011068
- [18] P. Rouchon and J. Rudolph, Invariant tracking and stabilization: problem formulation and examples. Springer, Lecture Notes in Control and Inform. Sci. 246 (1999) 261-273. Zbl0932.93066MR1714594
- [19] A.J. van der Schaft, Symmetries in optimal control. SIAM J. Control Optim. 25 (1987) 245-259. Zbl0616.49003MR877061
- [20] C. Woernle, Flatness-based control of a nonholonomic mobile platform. Z. Angew. Math. Mech. 78 (1998) 43-46. Zbl0915.70020