On characterizing the Pólya distribution
Héctor M. Ramos; David Almorza; Juan A. García-Ramos
ESAIM: Probability and Statistics (2002)
- Volume: 6, page 105-112
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topRamos, Héctor M., Almorza, David, and García-Ramos, Juan A.. "On characterizing the Pólya distribution." ESAIM: Probability and Statistics 6 (2002): 105-112. <http://eudml.org/doc/245596>.
@article{Ramos2002,
abstract = {In this paper two characterizations of the Pólya distribution are obtained when its contagion parameter is negative. One of them is based on mixtures and the other one is obtained by characterizing a subfamily of the discrete Pearson system.},
author = {Ramos, Héctor M., Almorza, David, García-Ramos, Juan A.},
journal = {ESAIM: Probability and Statistics},
keywords = {Pólya distribution; hypergeometric distribution; characterization},
language = {eng},
pages = {105-112},
publisher = {EDP-Sciences},
title = {On characterizing the Pólya distribution},
url = {http://eudml.org/doc/245596},
volume = {6},
year = {2002},
}
TY - JOUR
AU - Ramos, Héctor M.
AU - Almorza, David
AU - García-Ramos, Juan A.
TI - On characterizing the Pólya distribution
JO - ESAIM: Probability and Statistics
PY - 2002
PB - EDP-Sciences
VL - 6
SP - 105
EP - 112
AB - In this paper two characterizations of the Pólya distribution are obtained when its contagion parameter is negative. One of them is based on mixtures and the other one is obtained by characterizing a subfamily of the discrete Pearson system.
LA - eng
KW - Pólya distribution; hypergeometric distribution; characterization
UR - http://eudml.org/doc/245596
ER -
References
top- [1] A.J. Bosch, The Pólya distribution. Statist. Neerlandica 17 (1963) 201-213.
- [2] F. Eggenberger and G. Pólya, Über die Statistik Verketteter Vorgänge. Z. Angew. Math. Mech. 3 (1923) 279-289. Zbl49.0382.01JFM49.0382.01
- [3] F. Eggenberger and G. Pólya, Calcul des probabilités – sur l’interprétation de certaines courbes de fréquence. C. R. Acad. Sci. Paris 187 (1928) 870-872. Zbl54.0549.02JFM54.0549.02
- [4] W. Feller, On a general class of “contagious” distributions. Ann. Math. Statist. 14 (1943) 389-400. Zbl0063.01341
- [5] B. Friedman, A simple urn model. Comm. Pure Appl. Math. 2 (1949) 59-70. Zbl0033.07101MR30144
- [6] A. Hald, The compound hypergeometric distribution and a system of single sampling inspection plans based on prior distributions and costs. Technometrics 2 (1960) 275-340. Zbl0097.13701MR115256
- [7] K.G. Janardan, On Characterizing the Markov–Pólya distribution. Sankhyā Ser. A 46 (1984) 444-453. Zbl0559.60017
- [8] K.G. Janardan and D.J. Schaeffer, A generalization of Markov–Pólya distribution its extensions and applications. Biometrical J. 19 (1977) 87-106. Zbl0358.62016
- [9] N.L. Johnson and S. Kotz, Urn Models and Their Application. Wiley, New York (1977). Zbl0352.60001MR488211
- [10] C. Jordan, Sur un cas généralisé de la probabilité des épreuves répétées. C. R. Acad. Sci. Paris 184 (1927) 315-317. Zbl53.0496.01JFM53.0496.01
- [11] J. Ollero and H.M. Ramos, Description of a Subfamily of the Discrete Pearson System as Generalized-Binomial Distributions. J. Italian Statist. Soc. 2 (1995) 235-249. Zbl05501129
- [12] J.K. Ord, On a System of Discrete Distributions. Biometrika 54 (1967) 649-656. Zbl0166.15303MR224192
- [13] J.K. Ord, Families of Frequency Distributions. Griffin, London (1972). Zbl0249.62005MR324810
- [14] J. Panaretos and E. Xekalaki, On some distributions arising from certain generalized sampling schemes. Commun. Statist. Theory Meth. 15 (1986) 873-891. Zbl0612.60014MR832085
- [15] J. Panaretos and E. Xekalaki, A probability distribution associated with events with multiple occurrences. Statist. Probab. Lett. 8 (1989) 389-396. Zbl0677.62013MR1028999
- [16] G.P. Patil and S.W. Joshi, A Dictionary and Bibliography of Discrete Distributions. Oliver & Boyd, Edinburgh (1968). Zbl0193.18301MR282770
- [17] A.N. Philippou, G.A. Tripsiannis and D.L. Antzoulakos, New Pólya and inverse Pólya distributions of order . Commun. Statist. Theory Meth. 18 (1989) 2125-2137. Zbl0696.62020MR1033117
- [18] G. Pólya, Sur quelques points de la théorie des probabilités. Ann. Inst. H. Poincaré 1 (1930) 117-161. MR1507985JFM57.0610.02
- [19] M. Skibinsky, A characterization of hypergeometric distributions. J. Amer. Statist. Assoc. 65 (1970) 926-929. Zbl0196.22403MR268997
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.