On characterizing the Pólya distribution

Héctor M. Ramos; David Almorza; Juan A. García-Ramos

ESAIM: Probability and Statistics (2002)

  • Volume: 6, page 105-112
  • ISSN: 1292-8100

Abstract

top
In this paper two characterizations of the Pólya distribution are obtained when its contagion parameter is negative. One of them is based on mixtures and the other one is obtained by characterizing a subfamily of the discrete Pearson system.

How to cite

top

Ramos, Héctor M., Almorza, David, and García-Ramos, Juan A.. "On characterizing the Pólya distribution." ESAIM: Probability and Statistics 6 (2002): 105-112. <http://eudml.org/doc/245596>.

@article{Ramos2002,
abstract = {In this paper two characterizations of the Pólya distribution are obtained when its contagion parameter is negative. One of them is based on mixtures and the other one is obtained by characterizing a subfamily of the discrete Pearson system.},
author = {Ramos, Héctor M., Almorza, David, García-Ramos, Juan A.},
journal = {ESAIM: Probability and Statistics},
keywords = {Pólya distribution; hypergeometric distribution; characterization},
language = {eng},
pages = {105-112},
publisher = {EDP-Sciences},
title = {On characterizing the Pólya distribution},
url = {http://eudml.org/doc/245596},
volume = {6},
year = {2002},
}

TY - JOUR
AU - Ramos, Héctor M.
AU - Almorza, David
AU - García-Ramos, Juan A.
TI - On characterizing the Pólya distribution
JO - ESAIM: Probability and Statistics
PY - 2002
PB - EDP-Sciences
VL - 6
SP - 105
EP - 112
AB - In this paper two characterizations of the Pólya distribution are obtained when its contagion parameter is negative. One of them is based on mixtures and the other one is obtained by characterizing a subfamily of the discrete Pearson system.
LA - eng
KW - Pólya distribution; hypergeometric distribution; characterization
UR - http://eudml.org/doc/245596
ER -

References

top
  1. [1] A.J. Bosch, The Pólya distribution. Statist. Neerlandica 17 (1963) 201-213. 
  2. [2] F. Eggenberger and G. Pólya, Über die Statistik Verketteter Vorgänge. Z. Angew. Math. Mech. 3 (1923) 279-289. Zbl49.0382.01JFM49.0382.01
  3. [3] F. Eggenberger and G. Pólya, Calcul des probabilités – sur l’interprétation de certaines courbes de fréquence. C. R. Acad. Sci. Paris 187 (1928) 870-872. Zbl54.0549.02JFM54.0549.02
  4. [4] W. Feller, On a general class of “contagious” distributions. Ann. Math. Statist. 14 (1943) 389-400. Zbl0063.01341
  5. [5] B. Friedman, A simple urn model. Comm. Pure Appl. Math. 2 (1949) 59-70. Zbl0033.07101MR30144
  6. [6] A. Hald, The compound hypergeometric distribution and a system of single sampling inspection plans based on prior distributions and costs. Technometrics 2 (1960) 275-340. Zbl0097.13701MR115256
  7. [7] K.G. Janardan, On Characterizing the Markov–Pólya distribution. Sankhyā Ser. A 46 (1984) 444-453. Zbl0559.60017
  8. [8] K.G. Janardan and D.J. Schaeffer, A generalization of Markov–Pólya distribution its extensions and applications. Biometrical J. 19 (1977) 87-106. Zbl0358.62016
  9. [9] N.L. Johnson and S. Kotz, Urn Models and Their Application. Wiley, New York (1977). Zbl0352.60001MR488211
  10. [10] C. Jordan, Sur un cas généralisé de la probabilité des épreuves répétées. C. R. Acad. Sci. Paris 184 (1927) 315-317. Zbl53.0496.01JFM53.0496.01
  11. [11] J. Ollero and H.M. Ramos, Description of a Subfamily of the Discrete Pearson System as Generalized-Binomial Distributions. J. Italian Statist. Soc. 2 (1995) 235-249. Zbl05501129
  12. [12] J.K. Ord, On a System of Discrete Distributions. Biometrika 54 (1967) 649-656. Zbl0166.15303MR224192
  13. [13] J.K. Ord, Families of Frequency Distributions. Griffin, London (1972). Zbl0249.62005MR324810
  14. [14] J. Panaretos and E. Xekalaki, On some distributions arising from certain generalized sampling schemes. Commun. Statist. Theory Meth. 15 (1986) 873-891. Zbl0612.60014MR832085
  15. [15] J. Panaretos and E. Xekalaki, A probability distribution associated with events with multiple occurrences. Statist. Probab. Lett. 8 (1989) 389-396. Zbl0677.62013MR1028999
  16. [16] G.P. Patil and S.W. Joshi, A Dictionary and Bibliography of Discrete Distributions. Oliver & Boyd, Edinburgh (1968). Zbl0193.18301MR282770
  17. [17] A.N. Philippou, G.A. Tripsiannis and D.L. Antzoulakos, New Pólya and inverse Pólya distributions of order k . Commun. Statist. Theory Meth. 18 (1989) 2125-2137. Zbl0696.62020MR1033117
  18. [18] G. Pólya, Sur quelques points de la théorie des probabilités. Ann. Inst. H. Poincaré 1 (1930) 117-161. MR1507985JFM57.0610.02
  19. [19] M. Skibinsky, A characterization of hypergeometric distributions. J. Amer. Statist. Assoc. 65 (1970) 926-929. Zbl0196.22403MR268997

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.