Characterization of the departure process from an ME/ME/1 queue

Jayesh Kumaran; Kenneth Mitchell; Appie Van de Liefvoort

RAIRO - Operations Research - Recherche Opérationnelle (2004)

  • Volume: 38, Issue: 2, page 173-191
  • ISSN: 0399-0559

Abstract

top
In this paper we propose a family of finite approximations for the departure process of an ME/ME/1 queue indexed by a parameter k defined as the system size of the finite approximation. The approximations capture the interdeparture times from an ME/ME/1 queue exactly and preserve the lag correlations of inter-event times of the departures from an ME/ME/1 queue up to lag ( k - 1 ) .

How to cite

top

Kumaran, Jayesh, Mitchell, Kenneth, and Van de Liefvoort, Appie. "Characterization of the departure process from an ME/ME/1 queue." RAIRO - Operations Research - Recherche Opérationnelle 38.2 (2004): 173-191. <http://eudml.org/doc/245643>.

@article{Kumaran2004,
abstract = {In this paper we propose a family of finite approximations for the departure process of an ME/ME/1 queue indexed by a parameter $k$ defined as the system size of the finite approximation. The approximations capture the interdeparture times from an ME/ME/1 queue exactly and preserve the lag correlations of inter-event times of the departures from an ME/ME/1 queue up to lag $(k-1)$.},
author = {Kumaran, Jayesh, Mitchell, Kenneth, Van de Liefvoort, Appie},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {eng},
number = {2},
pages = {173-191},
publisher = {EDP-Sciences},
title = {Characterization of the departure process from an ME/ME/1 queue},
url = {http://eudml.org/doc/245643},
volume = {38},
year = {2004},
}

TY - JOUR
AU - Kumaran, Jayesh
AU - Mitchell, Kenneth
AU - Van de Liefvoort, Appie
TI - Characterization of the departure process from an ME/ME/1 queue
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2004
PB - EDP-Sciences
VL - 38
IS - 2
SP - 173
EP - 191
AB - In this paper we propose a family of finite approximations for the departure process of an ME/ME/1 queue indexed by a parameter $k$ defined as the system size of the finite approximation. The approximations capture the interdeparture times from an ME/ME/1 queue exactly and preserve the lag correlations of inter-event times of the departures from an ME/ME/1 queue up to lag $(k-1)$.
LA - eng
UR - http://eudml.org/doc/245643
ER -

References

top
  1. [1] N. Akar, N. Oguz and K. Sohraby, A novel computational method for solving finite QBD processes. Commun. Stat. Stochastic Models 16 (2000) 273-311. Zbl0970.60079MR1754432
  2. [2] S. Asmussen and J. Møller, Calculation of the steady state waiting time distribution in GI/PH/c and MAP/PH/c queues. Queue. Syst. Theory Appl. 37 (2001) 9-29. Zbl0982.60096MR1833658
  3. [3] S. Asmussen and C. O’Cinneide, Representations for matrix-geometric and matrix exponential steady-state distributions with applications to many-server queues. Commun. Statist. Stochastic Models 14 (1998) 369-387. Zbl0934.60082
  4. [4] J. Beran, R. Sherman, M. Taqqu and W. Willinger, Long-range dependence in variable bit rate video traffic. IEEE Trans. Commun. 43 (1995) 1566-1579. 
  5. [5] D. Berstimas and D. Nakazato, The departure process from a GI/GI/1 queue and its applications to the analysis of tandem queues. Tech. Rep. 3725–91, Sloan School of Management (1990). Working paper. 
  6. [6] G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queuing Networks and Markov Chains. A Wiley-Interscience Publication, New York, John Wiley & Sons (1998). Zbl1099.60002MR1644321
  7. [7] P. Burke, The output of queueing systems. Oper. Res. 699 (1956) 699-704. MR83416
  8. [8] D. Daley, The correlation structure of the output process of some single server queueing systems. Ann. Math. Stat. 39 (1968) 1007-1019. Zbl0162.49202MR224179
  9. [9] R. Disneyand P. deMorais, Covariance properties for the departure process of M/ E k /1//N queues. AIIE Transactions 8 (1976) 169-175. MR461711
  10. [10] E. Gelenbe, On approximate computer system models. J. ACM 22 (1975) 261-269. Zbl0322.68035MR381028
  11. [11] E. Gelenbe, X. Mang and Y. Feng, Diffusion cell loss estimate for ATM with multiclass bursty traffic. Int. J. Comput. Syst. Sci. Engin. 11 (1996) 325-333. 
  12. [12] E. Gelenbe and I. Mitrani, Analysis and Synthesis of Computer Systems. Academic press, London, New York (1980). Zbl0484.68026MR696380
  13. [13] E. Gelenbe and G. Pujolle, The behaviour of a single queue in a general queueing network. Acta Informatica 7 (1976/77) 123-136. Zbl0349.60091MR433635
  14. [14] E. Gelenbe and G. Pujolle, A diffusion model for multiple class queueing networks, in Measuring, Modelling and Evaluating Computer Systems, Proc. of the Third International Symposium, Bonn – Bad Godesberg, Germany, edited by H. Beilner and H. Gelenbe. North-Holland (1977) 189-199 
  15. [15] M. Girish and J.-Q. Hu, Approximations for the departure process of a GI/GI/1 queue with Markov-modulated arrivals. Eur. J. Oper. Res. 134 (2001) 540-556. Zbl0989.60094MR1853763
  16. [16] D. Green, Departure Process from MAP/PH/1 Queues. Ph.D. Thesis, The University of Adelaide, Department of Applied Mathematics (1999). 
  17. [17] A. Heindl, Traffic-Based Decomposition of General Queueing Networks with Correlated Input Processes. Ph.D. Thesis, Technical University, Berlin (2001). Zbl1116.68367
  18. [18] J.-Q. Hu, The departure process of a GI/GI/1 queue and its MacLaurin series. Oper. Res. 44 (1996) 810-815. Zbl0879.60103
  19. [19] A. Ishikawa, On the joint distribution of the departure intervals in an M/G/1//N queue. J. Oper. Res. Soc. Japan 34 (1991) 422-435. Zbl0754.60111MR1156187
  20. [20] R. King, The covariance structure of the departure process from M/G/1 queues with finite waiting lines. J. R. Stat. Soc. 33 (1982) 401-405. Zbl0234.60113MR317440
  21. [21] P. Kühn, Approximation analysis of general queueing networks by decomposition. IEEE Trans. Commun. COM-27 (1979) 113-126. 
  22. [22] J. Kumaran, Ph.D. Thesis, University of Missouri-Kansas city, School of Computing Engineering. Forthcoming. 
  23. [23] G. Latouche and V. Ramaswami, A logarithmic reduction algorithm for quasi-birth-death process. J. Appl. Probab. 30 (1993) 650-674. Zbl0789.60055MR1232742
  24. [24] Y. Lee, A. van de Liefvoort and V. Wallace, Modeling correlated traffic with a generalized IPP. Perform. Eval. 40 (2000) 99-114. Zbl1052.68560
  25. [25] A. van de Liefvoort, The waiting time distribution and its moments of the PH/PH/1 queue. Oper. Res. Lett. 9 (1990) 261-269. Zbl0705.60086MR1071459
  26. [26] M. Linvy, B. Melamed and A. Tsiolis, The impact of autocorrelation on queueing systems. Manage. Sci. 39 (1993) 332-339. Zbl0825.90410
  27. [27] L. Lipsky, Queueing Theory: A Linear Algebraic Approach. New York, MacMillan (1992). Zbl1169.90001
  28. [28] L. Lipsky, P. Fiorini, W. Hsin and A. van de Liefvoort, Auto-correlation of lag-k for customers departing from semi-Markov processes. Tech. Rep. TUM-19506, Technical University Munich (1995). 
  29. [29] K. Mitchell and A. van de Liefvoort, Approximation models of feed-forward queueing networks with correlated arrivals. Perform. Eval. 51 (2003) 137-152. 
  30. [30] K. Mitchell, A. van de Liefvoort and J. Place, Second-order statistics of an isolated departure stream from a shared buffer with correlated sources, in Proc. of the Eighth International Conference on Telecommunication Systems Modeling and Analysis, March (2000) 565-574. 
  31. [31] P. Pancha and M. Zarki, Variable bit rate video transmission. IEEE Communications 32 (1994) 54-66. 
  32. [32] B. Patuwo, R. Disney and D. McNickle, The effect of correlated arrivals on queues. IIE Transactions 25 (1993) 105-110. 
  33. [33] D. Reininger, B. Melamed and D. Raychaudhuri, Variable bit rate MPEG video: Characteristics, modeling and multiplexing, in Proc. of the Fourteenth International Teletraffic Congress 1 (1994) 295-306. 
  34. [34] R. Sadre and B. Haverkort, Characterising traffic streams in networks of MAP/MAP/1 queues, in Proc. of the Eleventh GI/ITG, Conference on Measuring Modelling and Evaluation of Computer Communication Systems (2001) 195-208. 
  35. [35] W. Whitt, Approximating a point process by a renewal process I: Two basic methods. Oper. Res. 30 (1982) 125-147. Zbl0481.90025MR647405
  36. [36] W. Whitt, The queueing network analyzer. Bell System Technical J. 62 (1983) 2799-2815. 
  37. [37] W. Whitt, Approximations for departure processes and queues in series. Naval Research Logistics Quarterly 31 (1984) 499-521. Zbl0563.60094MR767051

NotesEmbed ?

top

You must be logged in to post comments.