Integer partitions, tilings of -gons and lattices
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2002)
- Volume: 36, Issue: 4, page 389-399
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topLatapy, Matthieu. "Integer partitions, tilings of $2D$-gons and lattices." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 36.4 (2002): 389-399. <http://eudml.org/doc/245645>.
@article{Latapy2002,
abstract = {In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of $2D$-gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a $2D$-gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.},
author = {Latapy, Matthieu},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {integer partitions; tilings of $2D$-gons; lattices; sand pile model; discrete dynamical models; dynamical models},
language = {eng},
number = {4},
pages = {389-399},
publisher = {EDP-Sciences},
title = {Integer partitions, tilings of $2D$-gons and lattices},
url = {http://eudml.org/doc/245645},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Latapy, Matthieu
TI - Integer partitions, tilings of $2D$-gons and lattices
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 4
SP - 389
EP - 399
AB - In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of $2D$-gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a $2D$-gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.
LA - eng
KW - integer partitions; tilings of $2D$-gons; lattices; sand pile model; discrete dynamical models; dynamical models
UR - http://eudml.org/doc/245645
ER -
References
top- [1] G.E. Andrews, The Theory of Partitions. Addison-Wesley Publishing Company, Encyclopedia Math. Appl. 2 (1976). Zbl0655.10001MR557013
- [2] G.D. Bailey, Coherence and enumeration of tilings of 3-zonotopes. Discrete Comput. Geom. 22 (1999) 119-147. Zbl0992.52006MR1692682
- [3] G.D. Bailey, Tilings of zonotopes: Discriminantal arrangements, oriented matroids, and enumeration, Ph.D. Thesis. University of Minnesota (1997).
- [4] T. Brylawski, The lattice of integer partitions. Discrete Math. 6 (1973) 210-219. Zbl0283.06003MR325405
- [5] B.A. Davey and H.A. Priestley, Introduction to Lattices and Orders. Cambridge University Press (1990). Zbl0701.06001MR1058437
- [6] N.G. de Bruijn, Algebraic theory of penrose’s non-periodic tilings of the plane. Konink. Nederl. Akad. Wetensch. Proc. Ser. A 43 (1981). Zbl0457.05021
- [7] N.G. de Bruijn, Dualization of multigrids. J. Phys. France Coloq (1981) 3-9. MR866319
- [8] N. Destainville, R. Mosseri and F. Bailly, Configurational entropy of codimension-one tilings and directed membranes. J. Statist. Phys. 87 (1997) 697. Zbl0952.52500MR1459040
- [9] N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octogonal random tilings: A combinatorial approach. Preprint (1999). Zbl0984.52007
- [10] N. Destainville, Entropie configurationnelle des pavages aléatoires et des membranes dirigées, Ph.D. Thesis. University Paris VI (1997).
- [11] S. Elnitsky, Rhombic tilings of polygons and classes of reduced words in coxeter groups. J. Combin. Theory 77 (1997) 193-221. Zbl0867.05019MR1429077
- [12] E. Goles and M.A. Kiwi, Games on line graphs and sand piles. Theoret. Comput. Sci. 115 (1993) 321-349. Zbl0785.90120MR1224440
- [13] R. Kenyon, Tilings of polygons with parallelograms. Algorithmica 9 (1993) 382-397. Zbl0778.52012MR1208568
- [14] M. Latapy and H.D. Phan, The lattice of integer partitions and its infinite extension, in DMTCS, Special Issue, Proc. of ORDAL’99. Preprint (to appear) available at http://www.liafa.jussieu.fr/~latapy/ Zbl1168.05007
- [15] M. Latapy, Generalized integer partitions, tilings of zonotopes and lattices, in Proc. of the 12-th international conference Formal Power Series and Algebraic Combinatorics (FPSAC’00), edited by A.A. Mikhalev, D. Krob and E.V. Mikhalev. Springer (2000) 256-267. Preprint available at http://www.liafa.jussieu.fr/~latapy/ Zbl0960.05005
- [16] M. Latapy, R. Mantaci, M. Morvan and Ha Duong Phan, Structure of some sand piles model. Theoret. Comput. Sci. 262 (2001) 525-556. Preprint available at http://www.liafa.jussieu.fr/~latapy/ Zbl0983.68085MR1836234
- [17] R.P. Stanley, Ordered structures and partitions. Mem. ACM 119 (1972). Zbl0246.05007MR332509
- [18] G. Ziegler, Lectures on Polytopes. Springer-Verlag, Grad. Texts in Math. (1995). Zbl0823.52002MR1311028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.