Integer partitions, tilings of 2 D -gons and lattices

Matthieu Latapy

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2002)

  • Volume: 36, Issue: 4, page 389-399
  • ISSN: 0988-3754

Abstract

top
In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of 2 D -gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a 2 D -gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.

How to cite

top

Latapy, Matthieu. "Integer partitions, tilings of $2D$-gons and lattices." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 36.4 (2002): 389-399. <http://eudml.org/doc/245645>.

@article{Latapy2002,
abstract = {In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of $2D$-gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a $2D$-gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.},
author = {Latapy, Matthieu},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {integer partitions; tilings of $2D$-gons; lattices; sand pile model; discrete dynamical models; dynamical models},
language = {eng},
number = {4},
pages = {389-399},
publisher = {EDP-Sciences},
title = {Integer partitions, tilings of $2D$-gons and lattices},
url = {http://eudml.org/doc/245645},
volume = {36},
year = {2002},
}

TY - JOUR
AU - Latapy, Matthieu
TI - Integer partitions, tilings of $2D$-gons and lattices
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 4
SP - 389
EP - 399
AB - In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of $2D$-gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a $2D$-gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.
LA - eng
KW - integer partitions; tilings of $2D$-gons; lattices; sand pile model; discrete dynamical models; dynamical models
UR - http://eudml.org/doc/245645
ER -

References

top
  1. [1] G.E. Andrews, The Theory of Partitions. Addison-Wesley Publishing Company, Encyclopedia Math. Appl. 2 (1976). Zbl0655.10001MR557013
  2. [2] G.D. Bailey, Coherence and enumeration of tilings of 3-zonotopes. Discrete Comput. Geom. 22 (1999) 119-147. Zbl0992.52006MR1692682
  3. [3] G.D. Bailey, Tilings of zonotopes: Discriminantal arrangements, oriented matroids, and enumeration, Ph.D. Thesis. University of Minnesota (1997). 
  4. [4] T. Brylawski, The lattice of integer partitions. Discrete Math. 6 (1973) 210-219. Zbl0283.06003MR325405
  5. [5] B.A. Davey and H.A. Priestley, Introduction to Lattices and Orders. Cambridge University Press (1990). Zbl0701.06001MR1058437
  6. [6] N.G. de Bruijn, Algebraic theory of penrose’s non-periodic tilings of the plane. Konink. Nederl. Akad. Wetensch. Proc. Ser. A 43 (1981). Zbl0457.05021
  7. [7] N.G. de Bruijn, Dualization of multigrids. J. Phys. France Coloq (1981) 3-9. MR866319
  8. [8] N. Destainville, R. Mosseri and F. Bailly, Configurational entropy of codimension-one tilings and directed membranes. J. Statist. Phys. 87 (1997) 697. Zbl0952.52500MR1459040
  9. [9] N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octogonal random tilings: A combinatorial approach. Preprint (1999). Zbl0984.52007
  10. [10] N. Destainville, Entropie configurationnelle des pavages aléatoires et des membranes dirigées, Ph.D. Thesis. University Paris VI (1997). 
  11. [11] S. Elnitsky, Rhombic tilings of polygons and classes of reduced words in coxeter groups. J. Combin. Theory 77 (1997) 193-221. Zbl0867.05019MR1429077
  12. [12] E. Goles and M.A. Kiwi, Games on line graphs and sand piles. Theoret. Comput. Sci. 115 (1993) 321-349. Zbl0785.90120MR1224440
  13. [13] R. Kenyon, Tilings of polygons with parallelograms. Algorithmica 9 (1993) 382-397. Zbl0778.52012MR1208568
  14. [14] M. Latapy and H.D. Phan, The lattice of integer partitions and its infinite extension, in DMTCS, Special Issue, Proc. of ORDAL’99. Preprint (to appear) available at http://www.liafa.jussieu.fr/~latapy/ Zbl1168.05007
  15. [15] M. Latapy, Generalized integer partitions, tilings of zonotopes and lattices, in Proc. of the 12-th international conference Formal Power Series and Algebraic Combinatorics (FPSAC’00), edited by A.A. Mikhalev, D. Krob and E.V. Mikhalev. Springer (2000) 256-267. Preprint available at http://www.liafa.jussieu.fr/~latapy/ Zbl0960.05005
  16. [16] M. Latapy, R. Mantaci, M. Morvan and Ha Duong Phan, Structure of some sand piles model. Theoret. Comput. Sci. 262 (2001) 525-556. Preprint available at http://www.liafa.jussieu.fr/~latapy/ Zbl0983.68085MR1836234
  17. [17] R.P. Stanley, Ordered structures and partitions. Mem. ACM 119 (1972). Zbl0246.05007MR332509
  18. [18] G. Ziegler, Lectures on Polytopes. Springer-Verlag, Grad. Texts in Math. (1995). Zbl0823.52002MR1311028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.