The output least squares identifiability of the diffusion coefficient from an H–observation in a 2–D elliptic equation
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 8, page 423-440
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Alessandrini and R. Magnanini, Elliptic Equations in Divergence Form, Geometric Critical Points of Solutions, and Stekloff Eigenfunctions. SIAM J. Math. Anal. 25-5 (1994) 1259-1268. Zbl0809.35070MR1289138
- [2] G. Chavent, Identification of distributed parameter systems: About the output least square method, its implementation and identifiability, in Proc. IFAC Symposium on Identification. Pergamon (1979) 85-97. Zbl0478.93059
- [3] G. Chavent, Quasi convex sets and size curvature condition, application to nonlinear inversion. J. Appl. Math. Optim. 24 (1991) 129-169. Zbl0779.47043MR1118695
- [4] G. Chavent, New size curvature conditions for strict quasi convexity of sets. SIAM J. Control Optim. 29-6 (1991) 1348-1372. Zbl0745.49008MR1132186
- [5] G. Chavent and K. Kunisch, A geometric theory for the –stability of the inverse problem in a 1–D elliptic equation from an –observation. Appl. Math. Optim. 27 (1993) 231-260. Zbl0776.35077
- [6] G. Chavent and K. Kunisch, On Weakly Nonlinear Inverse Problems. SIAM J. Appl. Math. 56-2 (1996) 542-572. Zbl0848.35138MR1381659
- [7] G. Chavent and K. Kunisch, State-space regularization: Geometric theory. Appl. Math. Optim. 37 (1998) 243-267. Zbl0895.35107MR1610795
- [8] G. Chavent and K. Kunisch, The Output Least Squares Identifiability of the Diffusion Coefficient from an -Observation in a Elliptic Equation. INRIA Report 4067 (2000). Zbl1092.93042
- [9] G. Chavent and J. Liu, Multiscale parametrization for the estimation of a diffusion coefficient in elliptic and parabolic problems, in Fifth IFAC Symposium on Control of Distributed Parameter Systems. Perpignan, France (1989).
- [10] C. Chicone and J. Gerlach, A note on the identifiability of distributed parameters in elliptic systems. SIAM J. Math. Anal. 18 (1987) 13781-384. Zbl0644.35092MR902338
- [11] V. Girault and P. A. Raviart, Finite Element Methods for Navier–Stokes Equations. Springer–Verlag, Berlin (1979). Zbl0585.65077
- [12] A. Grimstad, K. Kolltveit, T. Mannseth and J. Nordtvedt, Assessing the validity of a linearized error analysis for a nonlinear parameter estimation problem. Preprint. Zbl1016.62068
- [13] A. Grimstad and T. Mannseth, Nonlinearity, scale, and sensitivity for parameter estimation problems. Preprint. Zbl0952.35153
- [14] V. Isakov, Inverse Problems for Partial Differential Equations. Springer–Verlag, Berlin (1998). Zbl0908.35134
- [15] K. Ito and K. Kunisch, On the injectivity and linearization of the coefficient to solution mapping for elliptic boundary value problems. J. Math. Anal. Appl. 188 (1994) 1040-1066. Zbl0817.35021MR1305502
- [16] J. Liu, A multiresolution method for distributed parameter estimation. SIAM J. Sci. Stat. Comp. 14 (1993) 389-405. Zbl0773.65059MR1204237
- [17] G.R. Richter, An inverse problem for the steady state diffusion equation. SIAM J. Appl. Math. 4 (1981), 210-221. Zbl0501.35075MR628945
- [18] G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). Zbl0655.35002MR1094820