The output least squares identifiability of the diffusion coefficient from an H 1 –observation in a 2–D elliptic equation

Guy Chavent; Karl Kunisch

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 8, page 423-440
  • ISSN: 1292-8119

Abstract

top
Output least squares stability for the diffusion coefficient in an elliptic equation in dimension two is analyzed. This guarantees Lipschitz stability of the solution of the least squares formulation with respect to perturbations in the data independently of their attainability. The analysis shows the influence of the flow direction on the parameter to be estimated. A scale analysis for multi-scale resolution of the unknown parameter is provided.

How to cite

top

Chavent, Guy, and Kunisch, Karl. "The output least squares identifiability of the diffusion coefficient from an H$^1$–observation in a 2–D elliptic equation." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 423-440. <http://eudml.org/doc/245722>.

@article{Chavent2002,
abstract = {Output least squares stability for the diffusion coefficient in an elliptic equation in dimension two is analyzed. This guarantees Lipschitz stability of the solution of the least squares formulation with respect to perturbations in the data independently of their attainability. The analysis shows the influence of the flow direction on the parameter to be estimated. A scale analysis for multi-scale resolution of the unknown parameter is provided.},
author = {Chavent, Guy, Kunisch, Karl},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {parameter estimation; diffusion coefficient; inverse problem; identifiability; least squares},
language = {eng},
pages = {423-440},
publisher = {EDP-Sciences},
title = {The output least squares identifiability of the diffusion coefficient from an H$^1$–observation in a 2–D elliptic equation},
url = {http://eudml.org/doc/245722},
volume = {8},
year = {2002},
}

TY - JOUR
AU - Chavent, Guy
AU - Kunisch, Karl
TI - The output least squares identifiability of the diffusion coefficient from an H$^1$–observation in a 2–D elliptic equation
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 423
EP - 440
AB - Output least squares stability for the diffusion coefficient in an elliptic equation in dimension two is analyzed. This guarantees Lipschitz stability of the solution of the least squares formulation with respect to perturbations in the data independently of their attainability. The analysis shows the influence of the flow direction on the parameter to be estimated. A scale analysis for multi-scale resolution of the unknown parameter is provided.
LA - eng
KW - parameter estimation; diffusion coefficient; inverse problem; identifiability; least squares
UR - http://eudml.org/doc/245722
ER -

References

top
  1. [1] G. Alessandrini and R. Magnanini, Elliptic Equations in Divergence Form, Geometric Critical Points of Solutions, and Stekloff Eigenfunctions. SIAM J. Math. Anal. 25-5 (1994) 1259-1268. Zbl0809.35070MR1289138
  2. [2] G. Chavent, Identification of distributed parameter systems: About the output least square method, its implementation and identifiability, in Proc. IFAC Symposium on Identification. Pergamon (1979) 85-97. Zbl0478.93059
  3. [3] G. Chavent, Quasi convex sets and size x curvature condition, application to nonlinear inversion. J. Appl. Math. Optim. 24 (1991) 129-169. Zbl0779.47043MR1118695
  4. [4] G. Chavent, New size x curvature conditions for strict quasi convexity of sets. SIAM J. Control Optim. 29-6 (1991) 1348-1372. Zbl0745.49008MR1132186
  5. [5] G. Chavent and K. Kunisch, A geometric theory for the L 2 –stability of the inverse problem in a 1–D elliptic equation from an H 1 –observation. Appl. Math. Optim. 27 (1993) 231-260. Zbl0776.35077
  6. [6] G. Chavent and K. Kunisch, On Weakly Nonlinear Inverse Problems. SIAM J. Appl. Math. 56-2 (1996) 542-572. Zbl0848.35138MR1381659
  7. [7] G. Chavent and K. Kunisch, State-space regularization: Geometric theory. Appl. Math. Optim. 37 (1998) 243-267. Zbl0895.35107MR1610795
  8. [8] G. Chavent and K. Kunisch, The Output Least Squares Identifiability of the Diffusion Coefficient from an H 1 -Observation in a 2 D Elliptic Equation. INRIA Report 4067 (2000). Zbl1092.93042
  9. [9] G. Chavent and J. Liu, Multiscale parametrization for the estimation of a diffusion coefficient in elliptic and parabolic problems, in Fifth IFAC Symposium on Control of Distributed Parameter Systems. Perpignan, France (1989). 
  10. [10] C. Chicone and J. Gerlach, A note on the identifiability of distributed parameters in elliptic systems. SIAM J. Math. Anal. 18 (1987) 13781-384. Zbl0644.35092MR902338
  11. [11] V. Girault and P. A. Raviart, Finite Element Methods for Navier–Stokes Equations. Springer–Verlag, Berlin (1979). Zbl0585.65077
  12. [12] A. Grimstad, K. Kolltveit, T. Mannseth and J. Nordtvedt, Assessing the validity of a linearized error analysis for a nonlinear parameter estimation problem. Preprint. Zbl1016.62068
  13. [13] A. Grimstad and T. Mannseth, Nonlinearity, scale, and sensitivity for parameter estimation problems. Preprint. Zbl0952.35153
  14. [14] V. Isakov, Inverse Problems for Partial Differential Equations. Springer–Verlag, Berlin (1998). Zbl0908.35134
  15. [15] K. Ito and K. Kunisch, On the injectivity and linearization of the coefficient to solution mapping for elliptic boundary value problems. J. Math. Anal. Appl. 188 (1994) 1040-1066. Zbl0817.35021MR1305502
  16. [16] J. Liu, A multiresolution method for distributed parameter estimation. SIAM J. Sci. Stat. Comp. 14 (1993) 389-405. Zbl0773.65059MR1204237
  17. [17] G.R. Richter, An inverse problem for the steady state diffusion equation. SIAM J. Appl. Math. 4 (1981), 210-221. Zbl0501.35075MR628945
  18. [18] G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). Zbl0655.35002MR1094820

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.