# The output least squares identifiability of the diffusion coefficient from an H${}^{1}$–observation in a 2–D elliptic equation

ESAIM: Control, Optimisation and Calculus of Variations (2002)

- Volume: 8, page 423-440
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topChavent, Guy, and Kunisch, Karl. "The output least squares identifiability of the diffusion coefficient from an H$^1$–observation in a 2–D elliptic equation." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 423-440. <http://eudml.org/doc/245722>.

@article{Chavent2002,

abstract = {Output least squares stability for the diffusion coefficient in an elliptic equation in dimension two is analyzed. This guarantees Lipschitz stability of the solution of the least squares formulation with respect to perturbations in the data independently of their attainability. The analysis shows the influence of the flow direction on the parameter to be estimated. A scale analysis for multi-scale resolution of the unknown parameter is provided.},

author = {Chavent, Guy, Kunisch, Karl},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {parameter estimation; diffusion coefficient; inverse problem; identifiability; least squares},

language = {eng},

pages = {423-440},

publisher = {EDP-Sciences},

title = {The output least squares identifiability of the diffusion coefficient from an H$^1$–observation in a 2–D elliptic equation},

url = {http://eudml.org/doc/245722},

volume = {8},

year = {2002},

}

TY - JOUR

AU - Chavent, Guy

AU - Kunisch, Karl

TI - The output least squares identifiability of the diffusion coefficient from an H$^1$–observation in a 2–D elliptic equation

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2002

PB - EDP-Sciences

VL - 8

SP - 423

EP - 440

AB - Output least squares stability for the diffusion coefficient in an elliptic equation in dimension two is analyzed. This guarantees Lipschitz stability of the solution of the least squares formulation with respect to perturbations in the data independently of their attainability. The analysis shows the influence of the flow direction on the parameter to be estimated. A scale analysis for multi-scale resolution of the unknown parameter is provided.

LA - eng

KW - parameter estimation; diffusion coefficient; inverse problem; identifiability; least squares

UR - http://eudml.org/doc/245722

ER -

## References

top- [1] G. Alessandrini and R. Magnanini, Elliptic Equations in Divergence Form, Geometric Critical Points of Solutions, and Stekloff Eigenfunctions. SIAM J. Math. Anal. 25-5 (1994) 1259-1268. Zbl0809.35070MR1289138
- [2] G. Chavent, Identification of distributed parameter systems: About the output least square method, its implementation and identifiability, in Proc. IFAC Symposium on Identification. Pergamon (1979) 85-97. Zbl0478.93059
- [3] G. Chavent, Quasi convex sets and size $x$ curvature condition, application to nonlinear inversion. J. Appl. Math. Optim. 24 (1991) 129-169. Zbl0779.47043MR1118695
- [4] G. Chavent, New size $x$ curvature conditions for strict quasi convexity of sets. SIAM J. Control Optim. 29-6 (1991) 1348-1372. Zbl0745.49008MR1132186
- [5] G. Chavent and K. Kunisch, A geometric theory for the ${L}^{2}$–stability of the inverse problem in a 1–D elliptic equation from an ${H}^{1}$–observation. Appl. Math. Optim. 27 (1993) 231-260. Zbl0776.35077
- [6] G. Chavent and K. Kunisch, On Weakly Nonlinear Inverse Problems. SIAM J. Appl. Math. 56-2 (1996) 542-572. Zbl0848.35138MR1381659
- [7] G. Chavent and K. Kunisch, State-space regularization: Geometric theory. Appl. Math. Optim. 37 (1998) 243-267. Zbl0895.35107MR1610795
- [8] G. Chavent and K. Kunisch, The Output Least Squares Identifiability of the Diffusion Coefficient from an ${H}^{1}$-Observation in a $2D$ Elliptic Equation. INRIA Report 4067 (2000). Zbl1092.93042
- [9] G. Chavent and J. Liu, Multiscale parametrization for the estimation of a diffusion coefficient in elliptic and parabolic problems, in Fifth IFAC Symposium on Control of Distributed Parameter Systems. Perpignan, France (1989).
- [10] C. Chicone and J. Gerlach, A note on the identifiability of distributed parameters in elliptic systems. SIAM J. Math. Anal. 18 (1987) 13781-384. Zbl0644.35092MR902338
- [11] V. Girault and P. A. Raviart, Finite Element Methods for Navier–Stokes Equations. Springer–Verlag, Berlin (1979). Zbl0585.65077
- [12] A. Grimstad, K. Kolltveit, T. Mannseth and J. Nordtvedt, Assessing the validity of a linearized error analysis for a nonlinear parameter estimation problem. Preprint. Zbl1016.62068
- [13] A. Grimstad and T. Mannseth, Nonlinearity, scale, and sensitivity for parameter estimation problems. Preprint. Zbl0952.35153
- [14] V. Isakov, Inverse Problems for Partial Differential Equations. Springer–Verlag, Berlin (1998). Zbl0908.35134
- [15] K. Ito and K. Kunisch, On the injectivity and linearization of the coefficient to solution mapping for elliptic boundary value problems. J. Math. Anal. Appl. 188 (1994) 1040-1066. Zbl0817.35021MR1305502
- [16] J. Liu, A multiresolution method for distributed parameter estimation. SIAM J. Sci. Stat. Comp. 14 (1993) 389-405. Zbl0773.65059MR1204237
- [17] G.R. Richter, An inverse problem for the steady state diffusion equation. SIAM J. Appl. Math. 4 (1981), 210-221. Zbl0501.35075MR628945
- [18] G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). Zbl0655.35002MR1094820

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.