Approximation of a semilinear elliptic problem in an unbounded domain
Messaoud Kolli; Michelle Schatzman
- Volume: 37, Issue: 1, page 117-132
 - ISSN: 0764-583X
 
Access Full Article
topAbstract
topHow to cite
topKolli, Messaoud, and Schatzman, Michelle. "Approximation of a semilinear elliptic problem in an unbounded domain." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 37.1 (2003): 117-132. <http://eudml.org/doc/245741>.
@article{Kolli2003,
	abstract = {Let $f$ be an odd function of a class $\mathrm \{C\}^\{2\}$ such that $f(1)=0,f^\{\prime \}(0)<0,f^\{\prime \}(1)>0$ and $x\mapsto f(x)/x$ increases on $[0,1]$. We approximate the positive solution of $-\Delta u+f(u)=0,$ on $\mathbb \{R\}_\{+\}^\{2\}$ with homogeneous Dirichlet boundary conditions by the solution of $-\Delta u_\{L\}+f(u_\{L\})=0,$ on $]0,L[^\{2\}$ with adequate non-homogeneous Dirichlet conditions. We show that the error $u_\{L\}-u$ tends to zero exponentially fast, in the uniform norm.},
	author = {Kolli, Messaoud, Schatzman, Michelle},
	journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
	keywords = {semilinear elliptic equations; full-space problems; approximation by finite domains},
	language = {eng},
	number = {1},
	pages = {117-132},
	publisher = {EDP-Sciences},
	title = {Approximation of a semilinear elliptic problem in an unbounded domain},
	url = {http://eudml.org/doc/245741},
	volume = {37},
	year = {2003},
}
TY  - JOUR
AU  - Kolli, Messaoud
AU  - Schatzman, Michelle
TI  - Approximation of a semilinear elliptic problem in an unbounded domain
JO  - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY  - 2003
PB  - EDP-Sciences
VL  - 37
IS  - 1
SP  - 117
EP  - 132
AB  - Let $f$ be an odd function of a class $\mathrm {C}^{2}$ such that $f(1)=0,f^{\prime }(0)<0,f^{\prime }(1)>0$ and $x\mapsto f(x)/x$ increases on $[0,1]$. We approximate the positive solution of $-\Delta u+f(u)=0,$ on $\mathbb {R}_{+}^{2}$ with homogeneous Dirichlet boundary conditions by the solution of $-\Delta u_{L}+f(u_{L})=0,$ on $]0,L[^{2}$ with adequate non-homogeneous Dirichlet conditions. We show that the error $u_{L}-u$ tends to zero exponentially fast, in the uniform norm.
LA  - eng
KW  - semilinear elliptic equations; full-space problems; approximation by finite domains
UR  - http://eudml.org/doc/245741
ER  - 
References
top- [1] S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1084–1095.
 - [2] H. Brezis, Analyse fonctionnelle. Masson, Paris (1983). Théorie et applications [Theory and applications]. Zbl0511.46001MR697382
 - [3] Xinfu Chen, Generation and propagation of interfaces for reaction-diffusion equations. J. Differential Equations 96 (1992) 116–141. Zbl0765.35024
 - [4] E.A. Coddington and N. Levinson, Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York, Toronto, London (1955). Zbl0064.33002MR69338
 - [5] Ha Dang, P.C.Fife and L.A. Peletier, Saddle solutions of the bistable diffusion equation. Z. Angew. Math. Phys. 43 (1992) 984–998. Zbl0764.35048
 - [6] F.R. de Hoog and R. Weiss, An approximation theory for boundary value problems on infinite intervals. Computing 24 (1980) 227–239. Zbl0441.65064
 - [7] P. de Mottoni and M. Schatzman, Development of interfaces in . Proc. Roy. Soc. Edinburgh Sect. A 116 (1990) 207–220. Zbl0725.35009
 - [8] P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533–1589. Zbl0840.35010
 - [9] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31 (1977) 629–651. Zbl0367.65051
 - [10] L.C. Evans, H.M. Soner and P.E. Souganidis, Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45 (1992) 1097–1123. Zbl0801.35045
 - [11] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. Zbl1042.35002MR1814364
 - [12] T.M. Hagstrom and H.B. Keller, Asymptotic boundary conditions and numerical methods for nonlinear elliptic problems on unbounded domains. Math. Comp. 48 (1987) 449–470. Zbl0627.65120
 - [13] T. Hagstrom and H.B. Keller, Exact boundary conditions at an artificial boundary for partial differential equations in cylinders. SIAM J. Math. Anal. 17 (1986) 322–341. Zbl0617.35052
 - [14] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature. J. Differential Geom. 38 (1993) 417–461. Zbl0784.53035
 - [15] A.D. Jepson and H.B. Keller, Steady state and periodic solution paths: their bifurcations and computations, in Numerical methods for bifurcation problems, Dortmund (1983). Birkhäuser, Basel (1984) 219–246. Zbl0579.65057
 - [16] A. Jepson, Asymptotic boundary conditions for ordinary differential equations. Ph.D. thesis, California Institute of Technology (1980).
 - [17] P.A. Markowich, A theory for the approximation of solutions of boundary value problems on infinite intervals. SIAM J. Math. Anal. 13 (1982) 484–513. Zbl0498.34007
 - [18] M. Schatzman, On the stability of the saddle solution of Allen-Cahn’s equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1241–1275. Zbl0852.35020
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.