Feedback, trace and fixed-point semantics

P. Katis; Nicoletta Sabadini; Robert F. C. Walters

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2002)

  • Volume: 36, Issue: 2, page 181-194
  • ISSN: 0988-3754

Abstract

top
We introduce a notion of category with feedback-with-delay, closely related to the notion of traced monoidal category, and show that the Circ construction of [15] is the free category with feedback on a symmetric monoidal category. Combining with the Int construction of Joyal et al. [12] we obtain a description of the free compact closed category on a symmetric monoidal category. We thus obtain a categorical analogue of the classical localization of a ring with respect to a multiplicative subset. In this context we define a notion of fixed-point semantics of a category with feedback which is seen to include a variety of classical semantics in computer science.

How to cite

top

Katis, P., Sabadini, Nicoletta, and Walters, Robert F. C.. "Feedback, trace and fixed-point semantics." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 36.2 (2002): 181-194. <http://eudml.org/doc/245888>.

@article{Katis2002,
abstract = {We introduce a notion of category with feedback-with-delay, closely related to the notion of traced monoidal category, and show that the Circ construction of [15] is the free category with feedback on a symmetric monoidal category. Combining with the Int construction of Joyal et al. [12] we obtain a description of the free compact closed category on a symmetric monoidal category. We thus obtain a categorical analogue of the classical localization of a ring with respect to a multiplicative subset. In this context we define a notion of fixed-point semantics of a category with feedback which is seen to include a variety of classical semantics in computer science.},
author = {Katis, P., Sabadini, Nicoletta, Walters, Robert F. C.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {category with feedback-with-delay; traced monoidal category},
language = {eng},
number = {2},
pages = {181-194},
publisher = {EDP-Sciences},
title = {Feedback, trace and fixed-point semantics},
url = {http://eudml.org/doc/245888},
volume = {36},
year = {2002},
}

TY - JOUR
AU - Katis, P.
AU - Sabadini, Nicoletta
AU - Walters, Robert F. C.
TI - Feedback, trace and fixed-point semantics
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 2
SP - 181
EP - 194
AB - We introduce a notion of category with feedback-with-delay, closely related to the notion of traced monoidal category, and show that the Circ construction of [15] is the free category with feedback on a symmetric monoidal category. Combining with the Int construction of Joyal et al. [12] we obtain a description of the free compact closed category on a symmetric monoidal category. We thus obtain a categorical analogue of the classical localization of a ring with respect to a multiplicative subset. In this context we define a notion of fixed-point semantics of a category with feedback which is seen to include a variety of classical semantics in computer science.
LA - eng
KW - category with feedback-with-delay; traced monoidal category
UR - http://eudml.org/doc/245888
ER -

References

top
  1. [1] S. Abramsky, Retracing some paths in process algebras, Concur ’96, edited by U. Montanari and V. Sassone. Springer-Verlag, Lecture Notes in Comput. Sci. 1119 (1996) 1-17 
  2. [2] M. Bartha, An algebraic model of synchronous systems. Inform. and Comput. 97 (1992) 97-131. Zbl0768.68098MR1154208
  3. [3] L. Bernatsky and Z. Ésik, Sematics of flowchart programs and the free Conway theories. RAIRO: Theoret. Informatics Applic. 32 (1998) 35-78. MR1657511
  4. [4] S.L. Bloom and Z. Ésik, Axiomatising schemes and their behaviours. J. Comput. System Sci. 31 (1985) 375-393. Zbl0613.68013MR835132
  5. [5] S.L. Bloom and Z. Ésik, Iteration Theories: The Equational Logic of Iterative Processes. Springer-Verlag, EATCS Monogr. Theoret. Comput. Sci. (1993). Zbl0773.03033MR1295433
  6. [6] S.L. Bloom and Z. Ésik, Matrix and matricial iteration theories, Part I. J. Comput. System Sci. 46 (1993) 381-408. Zbl0791.08006MR1228813
  7. [7] S.L. Bloom, N. Sabadini and R.F.C. Walters, Matrices, machines and behaviors. Appl. Categorical Structures 4 (1996) 343-360. Zbl0859.18005MR1421175
  8. [8] R.F. Blute, J.R.B. Cockett and R.A.G. Seely, Feedback for linearly distributive categories: Traces and fixpoints. J. Pure Appl. Algebra 154 (2000) 27-69. Zbl0964.03063MR1787590
  9. [9] A. Carboni and R.F.C. Walters, Cartesian Bicategories I. J. Pure Appl. Algebra 49 (1987) 11-32. Zbl0637.18003MR920513
  10. [10] J. Conway, Regular Algebra and Finite Machines. Chapman and Hall, London (1971). Zbl0231.94041
  11. [11] C.C. Elgot, Monadic computation and iterative algebraic theories, edited by J.C. Shepherdson. North Holland, Amsterdam, Logic Colloquium 1973, Studies in Logic 80 (1975). Zbl0327.02040MR413584
  12. [12] C.C. Elgot, Matricial Theories. J. Algebra 42 (1976) 391-421. Zbl0361.18004MR430017
  13. [13] F. Gadducci, U. Montanari, P. Katis, N. Sabadini and R.F.C. Walters, Comparing Cospan-spans and Tiles via a Hoare-style process calculus. TOSCA Udine, Electron. Notes Theoret. Comput. Sci. 62 (2001) 152-171. Zbl1268.68126
  14. [14] M. Hasegawa, Models of Sharing Graphs: A categorical semantics of let and letrec, Ph.D. Thesis. Edinburgh (1997), Springer (1999). Zbl0943.68109MR1696494
  15. [15] A. Joyal, R. Street and D. Verity, Traced monoidal categories. Math. Proc. Camb. Phil. Soc. 119 (1996) 447-468. Zbl0845.18005MR1357057
  16. [16] A. Joyal and R. Street, Braided tensor categories. Adv. in Math. 102 (1993) 20-78. Zbl0817.18007MR1250465
  17. [17] W. Khalil and R.F.C. Walters, An imperative language based on distributive categories II. RAIRO: Theoret. Informatics Appl. 27 (1993) 503-522. Zbl0806.18006MR1258750
  18. [18] P. Katis, N. Sabadini and R.F.C. Walters, Bicategories of processes. J. Pure Appl. Algebra 115 (1997) 141-178. Zbl0933.18008MR1431159
  19. [19] P. Katis, N. Sabadini and R.F.C. Walters, Span(Graph): A categorical algebra of transition systems, in Proc. Algebraic Methodology and Software Technology. Springer-Verlag, Lecture Notes in Comput. Sci. 1349 (1997) 307-321. Zbl0885.18004
  20. [20] P. Katis, N. Sabadini and R.F.C. Walters, On the algebra of systems with feedback and boundary. Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000) 123-156. Zbl1003.94051MR1785817
  21. [21] P. Katis, N. Sabadini and R.F.C. Walters, A formalization of the IWIM Model, in Proc. COORDINATION 2000, edited by A. Porto and G.-C. Roman. Springer-Verlag, Lecture Notes in Comput. Sci. 1906 (2000) 267-283. 
  22. [22] P. Katis, N. Sabadini and R.F.C. Walters, Recursion and concurrency, Invited talk, FICS 2001. Florence (2001). 
  23. [23] P. Katis and R.F.C. Walters, The compact closed bicategory of left adjoints. Math. Proc. Camb. Phil. Soc. 130 (2001) 77-87. Zbl0980.18002MR1797732
  24. [24] G.M. Kelly and M. Laplaza, Coherence for compact closed categories. J. Pure Appl. Algebra 19 (1980) 193-213. Zbl0447.18005MR593254
  25. [25] K. Krohn and J. Rhodes, Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines. Trans. Amer. Math. Soc. 116 (1965) 450-464. Zbl0148.01002MR188316
  26. [26] M. Nagata, Local rings. Interscience (1962). Zbl0123.03402MR155856
  27. [27] R. Penrose, Applications of negative dimensional torsors, edited by D.J.A. Welsh. Academic Press, New York, Comb. Math. Appl. (1971) 221-244. Zbl0216.43502MR281657
  28. [28] W.J. Rugh, Linear System Theory, Second Edition. Prentice Hall (1996). Zbl0892.93002MR1211190
  29. [29] J.J.M.M. Rutten, A calculus of transition systems (towards universal coalgebra), in Modal Logic and Process Algebra, a bisimulation perspective, edited by A. Ponse, M. de Rijke and Y. Venema. CSLI Publications, Standford, CSLI Lecture Notes 53 (1995) 231-256. MR1375710
  30. [30] N. Sabadini, S. Vigna and R.F.C. Walters, A note on recursive functions. Math. Struct. Comput. Sci. 6 (1996) 127-139. Zbl0844.03025MR1386615
  31. [31] M.W. Shields, An introduction to Automata Theory. Blackwell Scientic Publications, Oxford (1987). 
  32. [32] A. Simpson and G. Plotkin, Complete axioms for categorical fixed-point operators, in Proc. 15th LICS (2000) 30-41. MR1946083
  33. [33] Gh. Stefanescu, On flowchart theories I: The deterministic case. J. Comput. System Sci. 35 (1985) 163-191. Zbl0628.68018MR910211
  34. [34] G. Stefanescu, Network Algebra. Springer-Verlag (2000). Zbl0956.68002MR1753209
  35. [35] R.F.C. Walters, Categories and Computer Science. Carslaw Publications (1991), Cambridge University Press (1992). Zbl0789.18001MR1204658

NotesEmbed ?

top

You must be logged in to post comments.