Conditional principles for random weighted measures
ESAIM: Probability and Statistics (2005)
- Volume: 9, page 283-306
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topGozlan, Nathael. "Conditional principles for random weighted measures." ESAIM: Probability and Statistics 9 (2005): 283-306. <http://eudml.org/doc/245918>.
@article{Gozlan2005,
abstract = {In this paper, we prove a conditional principle of Gibbs type for random weighted measures of the form $\{L_n=\frac\{1\}\{n\}\sum _\{i=1\}^nZ_i\delta _\{x_i^n\}\}$, $(Z_i)_i$ being a sequence of i.i.d. real random variables. Our work extends the preceding results of Gamboa and Gassiat (1997), in allowing to consider thin constraints. Transportation-like ideas are used in the proof.},
author = {Gozlan, Nathael},
journal = {ESAIM: Probability and Statistics},
keywords = {large deviations; transportation cost inequalities; conditional laws of large numbers; minimum entropy methods; Large deviations},
language = {eng},
pages = {283-306},
publisher = {EDP-Sciences},
title = {Conditional principles for random weighted measures},
url = {http://eudml.org/doc/245918},
volume = {9},
year = {2005},
}
TY - JOUR
AU - Gozlan, Nathael
TI - Conditional principles for random weighted measures
JO - ESAIM: Probability and Statistics
PY - 2005
PB - EDP-Sciences
VL - 9
SP - 283
EP - 306
AB - In this paper, we prove a conditional principle of Gibbs type for random weighted measures of the form ${L_n=\frac{1}{n}\sum _{i=1}^nZ_i\delta _{x_i^n}}$, $(Z_i)_i$ being a sequence of i.i.d. real random variables. Our work extends the preceding results of Gamboa and Gassiat (1997), in allowing to consider thin constraints. Transportation-like ideas are used in the proof.
LA - eng
KW - large deviations; transportation cost inequalities; conditional laws of large numbers; minimum entropy methods; Large deviations
UR - http://eudml.org/doc/245918
ER -
References
top- [1] S.G. Bobkov and F. Gotze, Exponential integrability and transportation cost related to logarithmic sobolev inequalities. J. Funct. Anal. 163 (1999) 1–28. Zbl0924.46027
- [2] J.M. Borwein and A.S. Lewis, Duality relationships for entropy-like minimization problems. SIAM J. Control Optim. 29 (1991) 325–338. Zbl0797.49030
- [3] J.M. Borwein and A.S. Lewis, Partially-finite programming in and the exitence of maximum entropy estimates. SIAM J. Optim. 3 (1993) 248–267. Zbl0780.49015
- [4] P. Cattiaux and N. Gozlan, Deviations lower bounds and conditional principles. Prépublications de l’Université Paris 10, Nanterre (2002).
- [5] I. Csiszar, I-divergence geometry of probability distributions and minimization problems. Ann. Prob. 3 (1975) 146–158. Zbl0318.60013
- [6] I. Csiszar, Sanov property, generalized I-projection and a conditional limit theorem. Ann. Prob. 12 (1984) 768–793. Zbl0544.60011
- [7] I. Csiszar, Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Statist. 19 (1991) 2032–2066. Zbl0753.62003
- [8] I. Csiszar, F. Gamboa and E. Gassiat, Mem pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inform. Theory 45 (1999) 2253–2270. Zbl0958.94002
- [9] D. Dacunha-Castelle and F. Gamboa, Maximum d’entropie et problèmes des moments. Ann. Inst. Henri Poincaré 26 (1990) 567–596. Zbl0788.62007
- [10] A. Dembo and O. Zeitouni, Large deviations techniques and applications. Second edition. Springer-Verlag (1998). Zbl0896.60013MR1619036
- [11] J.D. Deuschel and D.W. Stroock, Large deviations. Academic Press (1989). Zbl0705.60029MR997938
- [12] R.S. Ellis, J. Gough and J.V. Pulé, The large deviation principle for measures with random weights. Rev. Math. Phys. 5 (1993) 659–692. Zbl0797.60027
- [13] F. Gamboa, Méthode du maximum d’entropie sur la moyenne et applications. Thèse Orsay (1989).
- [14] F. Gamboa and E. Gassiat, Maximum d’entropie et problèmes des moments: Cas multidimensionnel. Probab. Math. Statist. 12 (1991) 67–83. Zbl0766.60003
- [15] F. Gamboa and E. Gassiat, Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Statist. 25 (1997) 328–350. Zbl0871.62010
- [16] N. Gozlan, Principe conditionnel de Gibbs pour des contraintes fines approchées et inégalités de transport. Université Paris 10-Nanterre (2005).
- [17] J.B. Hirriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Springer-Verlag (2001). Zbl0998.49001MR1865628
- [18] C. Léonard, Minimizer of energy functionals. Acta Math. Hungar. 93 (2001) 281–325. Zbl1002.49017
- [19] C. Léonard, A convex optimization problem arising from probabilistic questions. Prépublications de l’Université Paris 10-Nanterre (2004).
- [20] C. Léonard, Dominating points and entropic projections. Prépublications de l’Université Paris 10-Nanterre (2004). Zbl1220.60018
- [21] P. Massart, Saint-Flour Lecture Notes (2003).
- [22] J. Najim, A Cramer type theorem for weighted random variables. Electronic J. Probab. 7 (2002). Zbl1011.60005MR1887624
- [23] R.T. Rockafellar and R. Wets, Variational Analysis. Springer-Verlag (1997). Zbl0888.49001MR1491362
- [24] D.W. Stroock and O. Zeitouni, Microcanonical distributions, Gibbs states and the equivalence of ensembles, R. Durret and H. Kesten Eds., Birkhäuser. Festschrift in honour of F. Spitzer (1991) 399–424. Zbl0745.60105
- [25] A. Van Der Vaart and J. Wellner, Weak convergence and empirical processes. Springer Series in Statistics. Springer (1995). Zbl0862.60002MR1385671
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.