On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints
ESAIM: Control, Optimisation and Calculus of Variations (2009)
- Volume: 15, Issue: 2, page 426-453
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N. Arada and J.P. Raymond, Optimal control problems with mixed control-state constraints. SIAM J. Control 39 (2000) 1391–1407. Zbl0993.49022MR1825584
- [2] N. Arada, H. El Fekih and J.-P. Raymond, Asymptotic analysis of some control problems. Asymptotic Anal. 24 (2000) 343–366. Zbl0979.49020MR1797776
- [3] M. Bergounioux and K. Kunisch, Primal-dual active set strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22 (2002) 193–224. Zbl1015.49026MR1911062
- [4] M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems. SIAM J. Control Opt. 37 (1999) 1176–1194. Zbl0937.49017MR1691937
- [5] M. Bergounioux, M. Haddou, M. Hintermüller and K. Kunisch, A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11 (2000) 495–521. Zbl1001.49034MR1787272
- [6] J.T. Betts and S.L. Campbell, Discretize Then Optimize. Technical Report M&CT-TECH-03-01, Phantom Works, Mathematics & Computing Technology. A Division of The Boeing Company (2003). Zbl1197.49032
- [7] J.T. Betts and S.L. Campbell, Discretize then Optimize, in Mathematics in Industry: Challenges and Frontiers A Process View: Practice and Theory, D.R. Ferguson and T.J. Peters Eds., SIAM Publications, Philadelphia (2005). Zbl1197.49032MR2333222
- [8] J.T. Betts, S.L. Campbell and A. Englesone, Direct transcription solution of optimal control problems with higher order state constraints: theory vs. practice. Optim. Engineering 8 (2007) 1–19. Zbl1170.49311MR2330464
- [9] E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Opt. 31 (1993) 993–1006. Zbl0798.49020MR1227543
- [10] E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Opt. 35 (1997) 1297–1327. Zbl0893.49017MR1453300
- [11] K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45 (2007) 1937–1953. Zbl1154.65055MR2346365
- [12] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2003) 865–888. Zbl1080.90074MR1972219
- [13] M. Hintermüller, F. Tröltzsch and I. Yousept, Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems. Numer. Math. 108 (2008) 571–603. Zbl1143.65051MR2369205
- [14] K. Ito and K. Kunisch, Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces. Nonlinear Anal. Theory Methods Appl. 41 (2000) 591–616. Zbl0971.49014MR1780634
- [15] K. Ito and K. Kunisch, Semi-smooth Newton methods for state-constrained optimal control problems. Systems Control Lett. 50 (2003) 221–228. Zbl1157.49311MR2010814
- [16] S. Kameswaran and L.T. Biegler, Advantages of Nonlinear Programming Based Methodologies for Inequality Path Constrained Optimal Control Problems – An Analysis of the Betts and Campbell Heat Conduction Problem. Technical report, Chemical Engineering Department Carnegie Mellon, University Pittsburgh, USA (2005).
- [17] K. Kunisch and A. Rösch, Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13 (2002) 321–334. Zbl1028.49027MR1951024
- [18] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971). Zbl0203.09001MR271512
- [19] C. Meyer and F. Tröltzsch, On an elliptic optimal control problem with pointwise mixed control-state constraints, in Recent Advances in Optimization, Proceedings of the 12th French-German-Spanish Conference on Optimization, Avignon, September 20–24, 2004, A. Seeger Ed., Lectures Notes in Economics and Mathematical Systems, Springer-Verlag (2005). Zbl1194.49027MR2191158
- [20] C. Meyer, A. Rösch and F. Tröltzsch, Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33 (2006) 209–228. Zbl1103.90072MR2208817
- [21] C. Meyer, U. Prüfert and F. Tröltzsch, On two numerical methods for state-constrained elliptic control problems. Optim. Methods Software 22 (2007) 871–899. Zbl1172.49022MR2360802
- [22] I. Neitzel and F. Tröltzsch, On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints. Technical Report 24-03, SPP 1253 (2008). Zbl1188.49029MR2536485
- [23] U. Prüfert, F. Tröltzsch and M. Weiser, The convergence of an interior point method for an elliptic control problem with mixed control-state constraints. Comput. Optim. Appl. 39 (2008) 183–218. Zbl1144.90511MR2373245
- [24] J.-P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete Contin. Dyn. S. 6 (2000) 431–450. Zbl1010.49015MR1739375
- [25] J.-P. Raymond and H. Zidani, Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39 (1999 ) 143–177. Zbl0922.49013MR1665668
- [26] A. Rösch and F. Tröltzsch, Existence of regular Lagrange multipliers for a nonlinear elliptic optimal control problem with pointwise control-state constraints. SIAM J. Control Opt. 45 (2006) 548–564. Zbl1108.49019MR2246090
- [27] A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints. SIAM J. Optim. 17 (2006) 776–794. Zbl1119.49022MR2257208
- [28] A. Rösch and F. Tröltzsch, On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints. SIAM J. Control Opt. 46 (2007) 1098–1115. Zbl05288517MR2338440
- [29] A. Schiela, The control reduced interior point method. A function space oriented algorithmic approach. Ph.D. thesis, Freie Universität Berlin, Germany (2006).
- [30] F. Tröltzsch and I. Yousept, A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints. Comput. Optim. Appl. DOI: 10.1007/s10589-007-9114-0 (2008) online first. Zbl1153.65343MR2471186