Globalization of SQP-methods in control of the instationary Navier-Stokes equations
Michael Hintermüller; Michael Hinze
- Volume: 36, Issue: 4, page 725-746
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topHintermüller, Michael, and Hinze, Michael. "Globalization of SQP-methods in control of the instationary Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.4 (2002): 725-746. <http://eudml.org/doc/245976>.
@article{Hintermüller2002,
abstract = {A numerically inexpensive globalization strategy of sequential quadratic programming methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated. Based on the proper functional analytic setting a convergence analysis for the globalized method is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical test demonstrates the feasibility of the approach.},
author = {Hintermüller, Michael, Hinze, Michael},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {globalized SQP-method; line search; Navier Stokes equations; optimal control; Navier-Stokes equations},
language = {eng},
number = {4},
pages = {725-746},
publisher = {EDP-Sciences},
title = {Globalization of SQP-methods in control of the instationary Navier-Stokes equations},
url = {http://eudml.org/doc/245976},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Hintermüller, Michael
AU - Hinze, Michael
TI - Globalization of SQP-methods in control of the instationary Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 4
SP - 725
EP - 746
AB - A numerically inexpensive globalization strategy of sequential quadratic programming methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated. Based on the proper functional analytic setting a convergence analysis for the globalized method is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical test demonstrates the feasibility of the approach.
LA - eng
KW - globalized SQP-method; line search; Navier Stokes equations; optimal control; Navier-Stokes equations
UR - http://eudml.org/doc/245976
ER -
References
top- [1] F. Abergel and R. Temam, On some Control Problems in Fluid Mechanics. Theoret. Comput. Fluid Dyn. 1 (1990) 303–325. Zbl0708.76106
- [2] E. Bänsch, An adaptive Finite-Element-Strategy for the three-dimensional time-dependent Navier-Stokes Equations. J. Comput. Math. 36 (1991) 3–28. Zbl0727.76078
- [3] D. Bertsekas, Nonlinear Programming. Athena Scientific, Belmont, Massachusetts (1995). Zbl0935.90037
- [4] J.F. Bonnans et al., Optimisation Numérique. Math. Appl. 27, Springer-Verlag, Berlin (1997). Zbl0952.65044MR1613833
- [5] O. Ghattas and J.J. Bark, Optimal control of two–and three–dimensional incompressible Navier–Stokes Flows. J. Comput. Physics 136 (1997) 231–244. Zbl0893.76067
- [6] P.E. Gill et al., Practical Optimization. Academic Press, San Diego, California (1981). Zbl0503.90062MR634376
- [7] R. Glowinski, Finite element methods for the numerical simulation of incompressible viscous flow. Introduction to the Control of the Navier-Stokes Equations. Lect. Appl. Math. 28 (1991). Zbl0751.76046MR1146474
- [8] W.A. Gruver and E. Sachs, Algorithmic Methods in Optimal Control. Res. Notes Math. 47, Pitman, London (1980). Zbl0456.49001MR604361
- [9] M. Heinkenschloss, Formulation and analysis of a sequential quadratic programming method for the optimal Dirichlet boundary control of Navier–Stokes flow, in Optimal Control: Theory, Algorithms, and Applications, Kluwer Academic Publishers B.V. (1998) 178–203. Zbl0924.76021
- [10] M. Hintermüller, On a globalized augmented Lagrangian-SQP algorithm for nonlinear optimal control problems with box constraints, in Fast solution methods for discretized optimization problems, K.-H. Hoffmann, R.H.W. Hoppe and V. Schulz Eds., Internat. Ser. Numer. Math. 138 (2001) 139–153. Zbl0999.49020
- [11] M. Hinze, Optimal and instantaneous control of the instationary Navier-Stokes equations, Habilitationsschrift (1999). Fachbereich Mathematik, Technische Universität Berlin, download see http://www.math.tu-dresden.de/hinze/publications.html.
- [12] M. Hinze and K. Kunisch, Second order methods for optimal control of time-dependent fluid flow. SIAM J. Optim. Control 40 (2001) 925–946. Zbl1012.49026
- [13] P. Hood and C. Taylor, A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. & Fluids 1 (1973) 73–100. Zbl0328.76020
- [14] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations. SIAM (1995). Zbl0832.65046MR1344684
- [15] F.S. Kupfer, An infinite-dimensional convergence theory for reduced SQP-methods in Hilbert space. SIAM J. Optim. 6 (1996). Zbl0846.65027MR1377728
- [16] E. Polak, Optimization. Appl. Math. Sci. 124, Springer-Verlag, New York (1997). Zbl0899.90148
- [17] M.J.D. Powell, Variable metric methods for constrained optimization, in Mathematical Programming, The State of the Art, Eds. Bachem, Grötschel, Korte, Bonn (1982). Zbl0536.90076MR717405
- [18] W.C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations. CBMS-NSF Regional Conference Series in Applied Mathematics 70, SIAM, Philadelphia (1998). Zbl0906.65051MR1645489
- [19] K. Schittkowski, On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function. Math. Operationsforschung u. Statist, Ser. Optim. 14 (1983) 197–216. Zbl0523.90075
- [20] R. Temam, Navier-Stokes Equations. North-Holland (1979). Zbl0426.35003MR603444
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.