Singular perturbation for the Dirichlet boundary control of elliptic problems

Faker Ben Belgacem; Henda El Fekih; Hejer Metoui

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2003)

  • Volume: 37, Issue: 5, page 833-850
  • ISSN: 0764-583X

Abstract

top
A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for the small penalization parameter. Some numerical results are reported on to highlight the reliability of such an approach.

How to cite

top

Belgacem, Faker Ben, Fekih, Henda El, and Metoui, Hejer. "Singular perturbation for the Dirichlet boundary control of elliptic problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 37.5 (2003): 833-850. <http://eudml.org/doc/246001>.

@article{Belgacem2003,
abstract = {A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for the small penalization parameter. Some numerical results are reported on to highlight the reliability of such an approach.},
author = {Belgacem, Faker Ben, Fekih, Henda El, Metoui, Hejer},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {boundary control problems; non-smooth Dirichlet condition; Robin penalization; singularly perturbed problem; non-smooth Dirichlet boundary condition; optimal control; regularity},
language = {eng},
number = {5},
pages = {833-850},
publisher = {EDP-Sciences},
title = {Singular perturbation for the Dirichlet boundary control of elliptic problems},
url = {http://eudml.org/doc/246001},
volume = {37},
year = {2003},
}

TY - JOUR
AU - Belgacem, Faker Ben
AU - Fekih, Henda El
AU - Metoui, Hejer
TI - Singular perturbation for the Dirichlet boundary control of elliptic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 5
SP - 833
EP - 850
AB - A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for the small penalization parameter. Some numerical results are reported on to highlight the reliability of such an approach.
LA - eng
KW - boundary control problems; non-smooth Dirichlet condition; Robin penalization; singularly perturbed problem; non-smooth Dirichlet boundary condition; optimal control; regularity
UR - http://eudml.org/doc/246001
ER -

References

top
  1. [1] D.A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
  2. [2] N. Arada, H. El Fekih and J.-P. Raymond, Asymptotic analysis of some control problems. Asymptot. Anal. 24 (2000) 343–366. Zbl0979.49020
  3. [3] I. Babuška, The finite element method with penalty. Math. Comp. 27 (1973) 221–228. Zbl0299.65057
  4. [4] F. Ben Belgacem, H. El Fekih and J.-P. Raymond, A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions. Asymptot. Anal. 34 (2003) 121–136. Zbl1043.35014
  5. [5] M. Bergounioux and K. Kunisch, Augmented Lagrangian techniques for elliptic state constrained optimal control problems. SIAM J. Control Optim. 35 (1997) 1524–1543. Zbl0897.49001
  6. [6] A. Bossavit, Approximation régularisée d’un problème aux limites non homogène. Séminaire J.-L. Lions 12 (Avril 1969). Zbl0204.48403
  7. [7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). Zbl0788.73002MR1115205
  8. [8] P. Colli Franzoni, Approssimazione mediante il metodo de penalizazione de problemi misti di Dirichlet-Neumann per operatori lineari ellittici del secondo ordine. Boll. Un. Mat. Ital. A (7) 4 (1973) 229–250. Zbl0266.35024
  9. [9] P. Colli Franzoni, Approximation of optimal control problems of systems described by boundary value mixed problems of Dirichlet-Neumann type, in 5th IFIP Conference on Optimization Techniques. Springer, Berlin, Lecture Notes in Computer Science 3 (1973) 152–162. Zbl0293.49016
  10. [10] M. Costabel and M. Dauge, A singularly perturbed mixed boundary value problem. Commun. Partial Differential Equations 21 1919–1949 (1996). Zbl0879.35017
  11. [11] M. Dauge, Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions. Springer-Verlag, Lecture Notes in Math. 1341 (1988). Zbl0668.35001MR961439
  12. [12] P. Grisvard, Singularities in boundary value problems. Masson (1992). Zbl0766.35001MR1173209
  13. [13] L.S. Hou and S.S. Ravindran, A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier-Stokes equations. SIAM J. Control Optim. 20 (1998) 1795–1814. Zbl0917.49003
  14. [14] L.S. Hou and S.S. Ravindran, Numerical approximation of optimal flow control problems by a penalty method: error estimates and numerical results. SIAM J. Sci. Comput. 20 (1999) 1753–1777. Zbl0952.93036
  15. [15] A. Kirsch, The Robin problem for the Helmholtz equation as a singular perturbation problem. Numer. Funct. Anal. Optim. 8 (1985) 1–20. Zbl0622.65107
  16. [16] I. Lasiecka and J. Sokolowski, Semidiscrete approximation of hyperbolic boundary value problem with nonhomogeneous Dirichlet boundary conditions. SIAM J. Math. Anal. 20 (1989) 1366–1387. Zbl0704.35085
  17. [17] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod (1968). Zbl0179.41801MR244606
  18. [18] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vols. 1 and 2. Dunod, Paris (1968). Zbl0165.10801MR247243
  19. [19] T. Masrour, Contrôlabilité et observabilité des sytèmes distribués, problèmes et méthodes. Thesis, École Nationale des Ponts et Chaussées. Paris (1995). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.