A semi-smooth Newton method for solving elliptic equations with gradient constraints
- Volume: 43, Issue: 2, page 209-238
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topGriesse, Roland, and Kunisch, Karl. "A semi-smooth Newton method for solving elliptic equations with gradient constraints." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 43.2 (2009): 209-238. <http://eudml.org/doc/246022>.
@article{Griesse2009,
abstract = {Semi-smooth Newton methods for elliptic equations with gradient constraints are investigated. The one- and multi-dimensional cases are treated separately. Numerical examples illustrate the approach and as well as structural features of the solution.},
author = {Griesse, Roland, Kunisch, Karl},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {gradient constraints; active set strategy; regularization; semi-smooth Newton method; primal-dual active set method; elliptic equations; numerical examples},
language = {eng},
number = {2},
pages = {209-238},
publisher = {EDP-Sciences},
title = {A semi-smooth Newton method for solving elliptic equations with gradient constraints},
url = {http://eudml.org/doc/246022},
volume = {43},
year = {2009},
}
TY - JOUR
AU - Griesse, Roland
AU - Kunisch, Karl
TI - A semi-smooth Newton method for solving elliptic equations with gradient constraints
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2009
PB - EDP-Sciences
VL - 43
IS - 2
SP - 209
EP - 238
AB - Semi-smooth Newton methods for elliptic equations with gradient constraints are investigated. The one- and multi-dimensional cases are treated separately. Numerical examples illustrate the approach and as well as structural features of the solution.
LA - eng
KW - gradient constraints; active set strategy; regularization; semi-smooth Newton method; primal-dual active set method; elliptic equations; numerical examples
UR - http://eudml.org/doc/246022
ER -
References
top- [1] J.-M. Bony, Principe du maximum dans les espaces de Sobolev. C. R. Acad. Sci. Paris Sér. A-B 265 (1967) 333–336. Zbl0164.16803MR223711
- [2] A. Brooks and T. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32 (1982) 99–259. Zbl0497.76041MR679322
- [3] X. Chen, Superlinear convergence and smoothing quasi-Newton methods for nonsmooth equations. J. Comput. Appl. Math. 80 (1997) 105–126. Zbl0881.65042MR1455748
- [4] M. Delfour and J.-P. Zolésio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization. Philadelphia (2001). Zbl1002.49029MR1855817
- [5] L.C. Evans, A second order elliptic equation with gradient constraint. Comm. Partial Differ. Equ. 4 (1979) 555–572. Zbl0448.35036MR529814
- [6] D. Gilbarg and N.S. Trudinger, Elliptic Differential Equations of Second Order. Springer, New York (1977). Zbl0361.35003MR473443
- [7] M. Hintermüller and K. Kunisch, Stationary optimal control problems with pointwise state constraints. SIAM J. Optim. (to appear). Zbl1195.49037MR2546337
- [8] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865–888. Zbl1080.90074MR1972219
- [9] H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint. Comm. Partial Differ. Equ. 8 (1983) 317–346. Zbl0538.35012MR693645
- [10] K. Ito and K. Kunisch, The primal-dual active set method for nonlinear optimal control problems with bilateral constraints. SIAM J. Contr. Opt. 43 (2004) 357–376. Zbl1077.90051MR2082706
- [11] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987). Zbl0628.65098MR925005
- [12] K. Kunisch and J. Sass, Trading regions under proportional transaction costs, in Operations Research Proceedings, U.M. Stocker and K.-H. Waldmann Eds., Springer, New York (2007) 563–568. Zbl1209.91149
- [13] O.A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968). Zbl0164.13002
- [14] S. Shreve and H.M. Soner, Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4 (1994) 609–692. Zbl0813.60051MR1284980
- [15] K. Stromberg, Introduction to Classical Real Analysis. Wadsworth International, Belmont, California (1981). Zbl0454.26001MR604364
- [16] G. Troianiello, Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). Zbl0655.35002MR1094820
- [17] M. Wiegner, The -character of solutions of second order elliptic equations with gradient constraint. Comm. Partial Differ. Equ. 6 (1981) 361–371. Zbl0458.35035MR607553
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.