Look and Say Fibonacci
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2008)
- Volume: 42, Issue: 4, page 729-746
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topSéébold, Patrice. "Look and Say Fibonacci." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 42.4 (2008): 729-746. <http://eudml.org/doc/246029>.
@article{Séébold2008,
abstract = {The $LS$ (Look and Say) derivative of a word is obtained by writing the number of consecutive equal letters when the word is spelled from left to right. For example, $LS(1\:1\:2\:3\:3) = 2\:1\:1\:2\:2\:3$ (two $1$, one $2$, two $3$). We start the study of the behaviour of binary words generated by morphisms under the $LS$ operator, focusing in particular on the Fibonacci word.},
author = {Séébold, Patrice},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {look and say sequence; Conway; binary words; Fibonacci word; morphisms; Lyndon factorization},
language = {eng},
number = {4},
pages = {729-746},
publisher = {EDP-Sciences},
title = {Look and Say Fibonacci},
url = {http://eudml.org/doc/246029},
volume = {42},
year = {2008},
}
TY - JOUR
AU - Séébold, Patrice
TI - Look and Say Fibonacci
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2008
PB - EDP-Sciences
VL - 42
IS - 4
SP - 729
EP - 746
AB - The $LS$ (Look and Say) derivative of a word is obtained by writing the number of consecutive equal letters when the word is spelled from left to right. For example, $LS(1\:1\:2\:3\:3) = 2\:1\:1\:2\:2\:3$ (two $1$, one $2$, two $3$). We start the study of the behaviour of binary words generated by morphisms under the $LS$ operator, focusing in particular on the Fibonacci word.
LA - eng
KW - look and say sequence; Conway; binary words; Fibonacci word; morphisms; Lyndon factorization
UR - http://eudml.org/doc/246029
ER -
References
top- [1] J.-P. Allouche and J. Shallit, Automatic sequences: theory, applications, generalizations. Cambridge University Press (2003). Zbl1086.11015MR1997038
- [2] S. Arshon, Démonstration de l’existence de suites asymétriques infinies. Mat. Sb. 44 (1937) 769–777 (in Russian), 777–779 (French summary). Zbl0018.11503JFM63.0928.01
- [3] J. Berstel, Mots sans carré et morphismes itérés. Discrete Math. 29 (1980). 235–244. Zbl0444.20050MR560766
- [4] J. Berstel, Fibonacci words – a survey, in The Book of , edited by G. Rozenberg, A. Salomaa. Springer-Verlag (1986) 13–27. Zbl0589.68053
- [5] J. Berstel and P. Séébold, A characterization of Sturmian morphisms, MFCS’93, Gdansk (Poland). Lect. Notes Comput. Sci. 711 (1993) 281–290. Zbl0925.11026MR1265070
- [6] J. Berstel and P. Séébold, A remark on morphic Sturmian words. RAIRO-Theor. Inf. Appl. 28 (1994) 255–263. Zbl0883.68104MR1282447
- [7] S. Brlek, S. Dulucq, A. Ladouceur and L. Vuillon, Combinatorial properties of smooth infinite words. Theor. Comput. Sci. 352 (2006) 306–317. Zbl1116.11014MR2207527
- [8] A. Cobham, Uniform tag sequences. Math. Syst. Theory 6 (1972) 164–192. Zbl0253.02029MR457011
- [9] J.H. Conway, The weird and wonderful chemistry of audioactive decay, in Open problems in communication and computation, edited by T.M. Cover, B. Gopinath. Springer-Verlag, New-York (1987) 173–188. See also Eureka 46 (1986) 5–18. MR922073
- [10] B. Germain-Bonne, À propos d’une itération sur chaînes de caractères numériques. Laboratoire d’Analyse Numérique et d’Optimisation. Université Lille 1, Research Report ANO 293 (1993).
- [11] B. Germain-Bonne, Chaînes alphanumériques ; cycles et points fixes. Laboratoire d’Analyse Numérique et d’Optimisation. Université Lille 1, Research Report ANO 301 (1993).
- [12] B. Germain-Bonne, Mots autodescriptifs et co-descriptifs. Laboratoire d’Analyse Numérique et d’Optimisation. Université Lille 1, Research Report ANO 332 (1994).
- [13] M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and Applications, Vol. 17. Addison-Wesley, Reading, Mass. (1983). Reprinted in the Cambridge Mathematical Library, Cambridge University Press (1997). Zbl0514.20045MR1475463
- [14] M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Vol. 90. Cambridge University Press (2002). Zbl1001.68093MR1905123
- [15] G. Melançon, Lyndon factorization of sturmian words. Discrete Math. 210 (2000) 137–149. Zbl0946.68113MR1731611
- [16] J.-J. Pansiot, Hiérarchie et fermeture de certaines classes de tag-systèmes. Acta Informatica 20 (1983) 179–196. Zbl0507.68046MR727164
- [17] G. Richomme, On morphisms preserving infinite Lyndon words. Discrete Math. Theor. Comput. Sci. 9 (2007) 89–108. Zbl1152.68490MR2306522
- [18] Handbook of Formal Languages, Vol. 1, edited by G. Rozenberg, A. Salomaa. Springer (1997). Zbl0866.68057MR1469992
- [19] P. Séébold, On the conjugation of standard morphisms. Theor. Comput. Sci. 195 (1998) 91–109. Zbl0981.68104MR1603835
- [20] P. Séébold, About some overlap-free morphisms on a -letter alphabet. J. Autom. Lang. Comb. 7 (2002) 579–597. Zbl1095.68090MR1990460
- [21] R. Siromoney, L. Mathew, V.R. Dare and K.G. Subramanian, Infinite Lyndon words. Inform. Process Lett. 50 (1994) 101–104. Zbl0803.68093MR1281048
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.